Let [tex]$A$[/tex] and [tex]$B$[/tex] be defined as follows:

[tex]$A$[/tex] is the set of even numbers greater than or equal to 4.
[tex]$ B = \{-30, -29, -28, -23, -22, 25\} $[/tex]

Find the cardinalities of [tex]$A$[/tex] and [tex]$B$[/tex].
[tex]$ n(A) = \square \quad n(B) = \square $[/tex]

Select true or false.
\begin{tabular}{|r|c|c|}
\hline & True & False \\
\hline [tex]$13 \in A$[/tex] & [tex]$\bigcirc$[/tex] & [tex]$\bigcirc$[/tex] \\
\hline [tex]$25 \in B$[/tex] & [tex]$\bigcirc$[/tex] & [tex]$\bigcirc$[/tex] \\
\hline [tex]$6 \notin A$[/tex] & [tex]$\bigcirc$[/tex] & [tex]$\bigcirc$[/tex] \\
\hline [tex]$-30 \in B$[/tex] & [tex]$\bigcirc$[/tex] & [tex]$\bigcirc$[/tex] \\
\hline
\end{tabular}



Answer :

Let's analyze the sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] as defined:

1. Set [tex]\( A \)[/tex] Definition:
- [tex]\( A \)[/tex] is the set of even numbers greater than or equal to 4. This means [tex]\( A \)[/tex] includes numbers such as 4, 6, 8, 10, and so forth, extending infinitely.

2. Set [tex]\( B \)[/tex] Definition:
- [tex]\( B = \{-30, -29, -28, -23, -22, 25\} \)[/tex]. This set contains six specific integers listed explicitly.

Now, let's determine the cardinalities and truth values of the statements:

### Cardinalities:

- Cardinality of [tex]\( A \)[/tex], denoted as [tex]\( n(A) \)[/tex]:
- Since [tex]\( A \)[/tex] is the set of even numbers starting from 4 and going on infinitely, [tex]\( n(A) \)[/tex] is infinite.
[tex]\[ n(A) = \text{infinite} \][/tex]

- Cardinality of [tex]\( B \)[/tex], denoted as [tex]\( n(B) \)[/tex]:
- [tex]\( B \)[/tex] has 6 elements: [tex]\(-30, -29, -28, -23, -22, 25\)[/tex].
[tex]\[ n(B) = 6 \][/tex]

### Truth Values:

- Statement: [tex]\( 13 \in A \)[/tex]:
- 13 is not an even number, so it cannot be in [tex]\( A \)[/tex].
[tex]\[ 13 \in A \quad \text{is} \quad \text{False} \][/tex]

- Statement: [tex]\( 25 \in B \)[/tex]:
- The set [tex]\( B \)[/tex] contains the number 25.
[tex]\[ 25 \in B \quad \text{is} \quad \text{True} \][/tex]

- Statement: [tex]\( 6 \notin A \)[/tex]:
- 6 is an even number greater than or equal to 4, so it is in [tex]\( A \)[/tex].
[tex]\[ 6 \notin A \quad \text{is} \quad \text{False} \][/tex]

- Statement: [tex]\( -30 \in B \)[/tex]:
- The set [tex]\( B \)[/tex] contains the number -30.
[tex]\[ -30 \in B \quad \text{is} \quad \text{True} \][/tex]

### Final Results:

[tex]\[ \begin{aligned} n(A) &= \text{infinite} \\ n(B) &= 6 \\ \end{aligned} \][/tex]

[tex]\[ \begin{tabular}{|r|c|c|} \hline & \text{True} & \text{False} \\ \hline $13 \in A$ & & \bigcirc \\ \hline $25 \in B$ & \bigcirc & \\ \hline $6 \notin A$ & & \bigcirc \\ \hline $-30 \in B$ & \bigcirc & \\ \hline \end{tabular} \][/tex]