Answer :
To find the measure of [tex]\( \angle 1 \)[/tex], follow the steps below:
1. Understand the relationship between the angles:
Since [tex]\( \angle 1 \)[/tex] and [tex]\( \angle 2 \)[/tex] form a linear pair, they are supplementary angles. This means their measures add up to 180 degrees.
2. Express the given information in terms of equations:
[tex]\[ m \angle 1 = 6x + 19 \][/tex]
[tex]\[ m \angle 2 = 5x - 4 \][/tex]
3. Set up the equation illustrating their supplementary nature:
[tex]\[ (6x + 19) + (5x - 4) = 180 \][/tex]
4. Combine like terms:
[tex]\[ 6x + 19 + 5x - 4 = 180 \][/tex]
[tex]\[ 11x + 15 = 180 \][/tex]
5. Solve for x:
[tex]\[ 11x + 15 = 180 \][/tex]
Subtract 15 from both sides:
[tex]\[ 11x = 165 \][/tex]
Divide by 11:
[tex]\[ x = 15 \][/tex]
6. Find [tex]\( m \angle 1 \)[/tex]:
Substitute [tex]\( x = 15 \)[/tex] back into the expression for [tex]\( m \angle 1 \)[/tex]:
[tex]\[ m \angle 1 = 6x + 19 \][/tex]
[tex]\[ m \angle 1 = 6(15) + 19 \][/tex]
[tex]\[ m \angle 1 = 90 + 19 \][/tex]
[tex]\[ m \angle 1 = 109 \][/tex]
Therefore, the measure of [tex]\( \angle 1 \)[/tex] is [tex]\( 109^\circ \)[/tex].
So, the correct answer is (b) [tex]\( 109^\circ \)[/tex].
1. Understand the relationship between the angles:
Since [tex]\( \angle 1 \)[/tex] and [tex]\( \angle 2 \)[/tex] form a linear pair, they are supplementary angles. This means their measures add up to 180 degrees.
2. Express the given information in terms of equations:
[tex]\[ m \angle 1 = 6x + 19 \][/tex]
[tex]\[ m \angle 2 = 5x - 4 \][/tex]
3. Set up the equation illustrating their supplementary nature:
[tex]\[ (6x + 19) + (5x - 4) = 180 \][/tex]
4. Combine like terms:
[tex]\[ 6x + 19 + 5x - 4 = 180 \][/tex]
[tex]\[ 11x + 15 = 180 \][/tex]
5. Solve for x:
[tex]\[ 11x + 15 = 180 \][/tex]
Subtract 15 from both sides:
[tex]\[ 11x = 165 \][/tex]
Divide by 11:
[tex]\[ x = 15 \][/tex]
6. Find [tex]\( m \angle 1 \)[/tex]:
Substitute [tex]\( x = 15 \)[/tex] back into the expression for [tex]\( m \angle 1 \)[/tex]:
[tex]\[ m \angle 1 = 6x + 19 \][/tex]
[tex]\[ m \angle 1 = 6(15) + 19 \][/tex]
[tex]\[ m \angle 1 = 90 + 19 \][/tex]
[tex]\[ m \angle 1 = 109 \][/tex]
Therefore, the measure of [tex]\( \angle 1 \)[/tex] is [tex]\( 109^\circ \)[/tex].
So, the correct answer is (b) [tex]\( 109^\circ \)[/tex].