Let's carefully examine and compare the two expressions given in the question:
1. Evaluate the first expression: [tex]\(\frac{3.56 \times 10^2}{1.09 \times 10^4}\)[/tex].
2. Evaluate the second expression: [tex]\(\left(4.08 \times 10^2\right) \left(1.95 \times 10^{-6}\right)\)[/tex].
First, we will simplify each expression individually.
1. First Expression:
[tex]\[
\frac{3.56 \times 10^2}{1.09 \times 10^4}
\][/tex]
We know from our calculations that this simplifies to:
[tex]\[
0.0326605504587156
\][/tex]
2. Second Expression:
[tex]\[
(4.08 \times 10^2) \times (1.95 \times 10^{-6})
\][/tex]
We know from our calculations that this simplifies to:
[tex]\[
0.0007956
\][/tex]
Now, let's compare the two values:
- We have:
[tex]\[
0.0326605504587156
\][/tex]
and
[tex]\[
0.0007956
\][/tex]
It is evident that:
[tex]\[
0.0326605504587156 > 0.0007956
\][/tex]
Thus, the correct statement is:
[tex]\[
\frac{3.56 \times 10^2}{1.09 \times 10^4} > \left(4.08 \times 10^2\right) \left(1.95 \times 10^{-6}\right)
\][/tex]
Therefore, the correct statement is the third one:
[tex]\[
\frac{3.56 \times 10^2}{1.09 \times 10^4} > \left(4.08 \times 10^2\right) \left(1.95 \times 10^{-6}\right)
\][/tex]