Answer :

To solve the expression [tex]\(\left(\sqrt[3]{x^2} \cdot \sqrt[6]{x^4}\right)^{-3}\)[/tex], we'll break it down step by step:

1. Simplify the expressions inside the parentheses:

First, we'll address [tex]\(\sqrt[3]{x^2}\)[/tex] and [tex]\(\sqrt[6]{x^4}\)[/tex] using their equivalent fractional exponents.

[tex]\[ \sqrt[3]{x^2} = x^{\frac{2}{3}} \][/tex]
[tex]\[ \sqrt[6]{x^4} = x^{\frac{4}{6}} = x^{\frac{2}{3}} \][/tex]

Therefore, the expression inside the parentheses becomes:

[tex]\[ \left(x^{\frac{2}{3}} \cdot x^{\frac{2}{3}}\right) \][/tex]

2. Combine the exponents:

When multiplying expressions with the same base, you add the exponents:

[tex]\[ x^{\frac{2}{3}} \cdot x^{\frac{2}{3}} = x^{\frac{2}{3} + \frac{2}{3}} = x^{\frac{4}{3}} \][/tex]

So the expression now is:

[tex]\[ \left(x^{\frac{4}{3}}\right)^{-3} \][/tex]

3. Distribute the outer exponent:

When raising a power to another power, you multiply the exponents:

[tex]\[ \left(x^{\frac{4}{3}}\right)^{-3} = x^{\left(\frac{4}{3}\right) \cdot (-3)} \][/tex]

Multiplying the exponents:

[tex]\[ x^{\frac{4}{3} \cdot -3} = x^{-\frac{12}{3}} = x^{-4} \][/tex]

Therefore, the simplified form of the expression [tex]\(\left(\sqrt[3]{x^2} \cdot \sqrt[6]{x^4}\right)^{-3}\)[/tex] is:

[tex]\[ x^{-4} \][/tex]

This is the final answer.