Answer :
To determine which of the numbers is the greatest, let's dissect and compare each of them step-by-step.
We have the following numbers:
1. [tex]\( 6.23 \times 10^{12} \)[/tex]
2. [tex]\( 6.23 \times 10^8 \)[/tex]
3. [tex]\( 6.23 \times 10^{-6} \)[/tex]
4. [tex]\( 6.23 \times 10^3 \)[/tex]
Step-by-Step Comparison:
1. Convert to Standard Form:
- [tex]\( 6.23 \times 10^{12} \)[/tex] translates to [tex]\( 6,230,000,000,000 \)[/tex].
- [tex]\( 6.23 \times 10^8 \)[/tex] translates to [tex]\( 623,000,000 \)[/tex].
- [tex]\( 6.23 \times 10^{-6} \)[/tex] translates to [tex]\( 0.00000623 \)[/tex].
- [tex]\( 6.23 \times 10^3 \)[/tex] translates to [tex]\( 6,230 \)[/tex].
2. Order the Numbers:
To determine the greatest number, let's put these in ascending order:
- [tex]\( 0.00000623 \)[/tex] (smallest)
- [tex]\( 6,230 \)[/tex]
- [tex]\( 623,000,000 \)[/tex]
- [tex]\( 6,230,000,000,000 \)[/tex] (largest)
From this order, we can see that [tex]\( 6,230,000,000,000 \)[/tex] (or [tex]\( 6.23 \times 10^{12} \)[/tex]) is the greatest number.
Thus, the greatest number among [tex]\( 6.23 \times 10^{12} \)[/tex], [tex]\( 6.23 \times 10^8 \)[/tex], [tex]\( 6.23 \times 10^{-6} \)[/tex], and [tex]\( 6.23 \times 10^3 \)[/tex] is [tex]\( 6.23 \times 10^{12} \)[/tex].
We have the following numbers:
1. [tex]\( 6.23 \times 10^{12} \)[/tex]
2. [tex]\( 6.23 \times 10^8 \)[/tex]
3. [tex]\( 6.23 \times 10^{-6} \)[/tex]
4. [tex]\( 6.23 \times 10^3 \)[/tex]
Step-by-Step Comparison:
1. Convert to Standard Form:
- [tex]\( 6.23 \times 10^{12} \)[/tex] translates to [tex]\( 6,230,000,000,000 \)[/tex].
- [tex]\( 6.23 \times 10^8 \)[/tex] translates to [tex]\( 623,000,000 \)[/tex].
- [tex]\( 6.23 \times 10^{-6} \)[/tex] translates to [tex]\( 0.00000623 \)[/tex].
- [tex]\( 6.23 \times 10^3 \)[/tex] translates to [tex]\( 6,230 \)[/tex].
2. Order the Numbers:
To determine the greatest number, let's put these in ascending order:
- [tex]\( 0.00000623 \)[/tex] (smallest)
- [tex]\( 6,230 \)[/tex]
- [tex]\( 623,000,000 \)[/tex]
- [tex]\( 6,230,000,000,000 \)[/tex] (largest)
From this order, we can see that [tex]\( 6,230,000,000,000 \)[/tex] (or [tex]\( 6.23 \times 10^{12} \)[/tex]) is the greatest number.
Thus, the greatest number among [tex]\( 6.23 \times 10^{12} \)[/tex], [tex]\( 6.23 \times 10^8 \)[/tex], [tex]\( 6.23 \times 10^{-6} \)[/tex], and [tex]\( 6.23 \times 10^3 \)[/tex] is [tex]\( 6.23 \times 10^{12} \)[/tex].