Solve each equation.

a. [tex]\frac{2}{5} = \frac{x}{15}[/tex]

b. [tex]\frac{4}{3} = \frac{x}{7}[/tex]

c. [tex]\frac{7}{5} = \frac{28}{x}[/tex]

d. [tex]\frac{11}{4} = \frac{5}{x}[/tex]



Answer :

Sure, let's solve each of these equations step by step.

### Equation (a)
[tex]\[ \frac{2}{5} = \frac{x}{15} \][/tex]

To solve for [tex]\( x \)[/tex], use cross-multiplication:

[tex]\[ 2 \cdot 15 = 5 \cdot x \\ 30 = 5x \\ x = \frac{30}{5} \\ x = 6 \][/tex]

### Equation (b)
[tex]\[ \frac{4}{3} = \frac{x}{7} \][/tex]

Again, use cross-multiplication:

[tex]\[ 4 \cdot 7 = 3 \cdot x \\ 28 = 3x \\ x = \frac{28}{3} \\ x \approx 9.333 \][/tex]

### Equation (c)
[tex]\[ \frac{7}{5} = \frac{28}{x} \][/tex]

Cross-multiply to solve for [tex]\( x \)[/tex]:

[tex]\[ 7 \cdot x = 5 \cdot 28 \\ 7x = 140 \\ x = \frac{140}{7} \\ x = 20 \][/tex]

### Equation (d)
[tex]\[ \frac{11}{4} = \frac{5}{x} \][/tex]

Use cross-multiplication:

[tex]\[ 11 \cdot x = 4 \cdot 5 \\ 11x = 20 \\ x = \frac{20}{11} \\ x \approx 1.818 \][/tex]

### Summary of Solutions
So, the solutions to the equations are:
a. [tex]\( x = 6 \)[/tex]
b. [tex]\( x \approx 9.333 \)[/tex]
c. [tex]\( x = 20 \)[/tex]
d. [tex]\( x \approx 1.818 \)[/tex]