On your own paper, solve the system of equations using substitution and identify the solution.

[tex]\[
\begin{array}{l}
x = 2y \\
4y = 300 - x
\end{array}
\][/tex]

A. [tex]\((150, 300)\)[/tex]

B. [tex]\((300, 150)\)[/tex]

C. [tex]\((50, 100)\)[/tex]

D. [tex]\((100, 50)\)[/tex]

E. [tex]\((200, 100)\)[/tex]



Answer :

To solve the system of equations using substitution, we will go through the following steps:

1. Identify the equations:
[tex]\[ x = 2y \][/tex]
[tex]\[ 4y = 300 - x \][/tex]

2. Substitute the value of [tex]\( x \)[/tex] from the first equation into the second equation:
Since [tex]\( x = 2y \)[/tex], substitute [tex]\( 2y \)[/tex] for [tex]\( x \)[/tex] in the second equation:
[tex]\[ 4y = 300 - 2y \][/tex]

3. Solve for [tex]\( y \)[/tex]:
Add [tex]\( 2y \)[/tex] to both sides to combine the [tex]\( y \)[/tex] terms:
[tex]\[ 4y + 2y = 300 \][/tex]
Simplify by combining like terms:
[tex]\[ 6y = 300 \][/tex]
Divide both sides by 6 to isolate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{300}{6} \][/tex]
Simplify the division:
[tex]\[ y = 50 \][/tex]

4. Find [tex]\( x \)[/tex] using the value of [tex]\( y \)[/tex]:
Substitute [tex]\( y = 50 \)[/tex] back into the first equation [tex]\( x = 2y \)[/tex]:
[tex]\[ x = 2 \times 50 \][/tex]
Simplify the multiplication:
[tex]\[ x = 100 \][/tex]

5. Identify the solution:
[tex]\[ x = 100, \quad y = 50 \][/tex]

Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (100, 50) \][/tex]

Thus, from the given options, the correct solution is:
[tex]\[ (100, 50) \][/tex]