Review the equation below:

[tex]\[ 2 \text{KClO}_3 \rightarrow 2 \text{KCl} + 3 \text{O}_2 \][/tex]

How many moles of oxygen are produced when 2 mol of potassium chlorate [tex]\(\left(\text{KClO}_3\right)\)[/tex] decompose?

A. 1
B. 2
C. 3
D. 6



Answer :

To determine how many moles of oxygen ([tex]$O_2$[/tex]) are produced when 2 moles of potassium chlorate ([tex]$KClO_3$[/tex]) decompose, we can use stoichiometry based on the given balanced chemical equation:

[tex]\[ 2 KClO_3 \rightarrow 2 KCl + 3 O_2 \][/tex]

1. Identify the molar ratios in the balanced equation:
- The coefficients indicate that 2 moles of [tex]$KClO_3$[/tex] produce 3 moles of [tex]$O_2$[/tex].

2. Set up the ratio based on the balanced equation:
- 2 moles of [tex]$KClO_3$[/tex] corresponds to 3 moles of [tex]$O_2$[/tex].
- Therefore, the ratio of [tex]$KClO_3$[/tex] to [tex]$O_2$[/tex] is [tex]\( \frac{3 \text{ moles } O_2}{2 \text{ moles } KClO_3} \)[/tex].

3. Calculate the moles of [tex]$O_2$[/tex] produced:
- For 2 moles of [tex]$KClO_3$[/tex], apply the ratio:

[tex]\[ \text{Moles of } O_2 = 2 \text{ moles } KClO_3 \times \frac{3 \text{ moles } O_2}{2 \text{ moles } KClO_3} \][/tex]

4. Simplify the calculation:
[tex]\[ \text{Moles of } O_2 = \frac{2 \times 3}{2} = 3 \text{ moles } O_2 \][/tex]

Therefore, when 2 moles of potassium chlorate ([tex]$KClO_3$[/tex]) decompose, 3 moles of oxygen ([tex]$O_2$[/tex]) are produced.

Thus, the correct answer is:

[tex]\[ \boxed{3} \][/tex]