Answer :

To find the value of [tex]\( x \)[/tex] that satisfies the equation

[tex]\[ \frac{x - 3}{x^2} + x - 2 = 0, \][/tex]

we will solve this equation step-by-step.

1. Rewrite the equation:

[tex]\[ \frac{x - 3}{x^2} + x - 2 = 0. \][/tex]

2. Combine all terms over a common denominator:

The common denominator for the terms is [tex]\( x^2 \)[/tex], hence:

[tex]\[ \frac{x - 3 + x^3 - 2x^2}{x^2} = 0. \][/tex]

3. Simplify the numerator:

Combine like terms in the numerator:

[tex]\[ \frac{x^3 - 2x^2 + x - 3}{x^2} = 0. \][/tex]

4. Set the numerator equal to zero:

Since the denominator [tex]\( x^2 \)[/tex] cannot be zero (because division by zero is undefined), we focus on the numerator:

[tex]\[ x^3 - 2x^2 + x - 3 = 0. \][/tex]

5. Solve the polynomial equation:

We need to find the roots of the cubic polynomial:

[tex]\[ x^3 - 2x^2 + x - 3 = 0. \][/tex]

The solutions to this cubic equation are:

[tex]\[ x = \frac{2}{3} + \left( -\frac{1}{2} - \frac{\sqrt{3}}{2}i \right) \left( \frac{\sqrt{77}}{6} + \frac{79}{54} \right)^{\frac{1}{3}} + \frac{1}{9 \left( -\frac{1}{2} - \frac{\sqrt{3}}{2}i \right) \left( \frac{\sqrt{77}}{6} + \frac{79}{54} \right)^{\frac{1}{3}}}, \][/tex]

[tex]\[ x = \frac{2}{3} + \frac{1}{9 \left( -\frac{1}{2} + \frac{\sqrt{3}}{2}i \right) \left( \frac{\sqrt{77}}{6} + \frac{79}{54} \right)^{\frac{1}{3}}} + \left( -\frac{1}{2} + \frac{\sqrt{3}}{2}i \right) \left( \frac{\sqrt{77}}{6} + \frac{79}{54} \right)^{\frac{1}{3}}, \][/tex]

[tex]\[ x = \frac{2}{3} + \left( \frac{\sqrt{77}}{6} + \frac{79}{54} \right)^{\frac{1}{3}} + \frac{1}{9 \left( \frac{\sqrt{77}}{6} + \frac{79}{54} \right)^{\frac{1}{3}}}. \][/tex]

Therefore, the values of [tex]\( x \)[/tex] for which the expression [tex]\(\frac{x - 3}{x^2} + x - 2 = 0\)[/tex] holds true are given by these complex solutions.