A store sells ink cartridges in packages.

\begin{tabular}{|c|c|c|}
\hline
\multicolumn{3}{|c|}{Ink World Packages} \\
\hline
& \begin{tabular}{c}
Number of \\
Cartridges
\end{tabular} & Total Cost \\
\hline
Package A & 3 & \[tex]$60 \\
\hline
Package B & 6 & \$[/tex]60 \\
\hline
Package C & 1 & \[tex]$20 \\
\hline
Package D & 3 & \$[/tex]20 \\
\hline
\end{tabular}

Which two packages have the same ratio of cartridges to cost?

A. packages [tex]$A$[/tex] and [tex]$D$[/tex]

B. packages [tex]$B$[/tex] and [tex]$C$[/tex]

C. packages [tex]$A$[/tex] and [tex]$C$[/tex]

D. packages [tex]$C$[/tex] and [tex]$D$[/tex]



Answer :

To determine which two packages have the same ratio of cartridges to cost, we will follow these steps.

### Step 1: Define the Packages
First, let's list out the data for each package:
- Package A: 3 cartridges for \[tex]$60 - Package B: 6 cartridges for \$[/tex]60
- Package C: 1 cartridge for \[tex]$20 - Package D: 3 cartridges for \$[/tex]20

### Step 2: Calculate the Ratio of Cartridges to Cost
Next, we calculate the ratio of cartridges to cost for each package. The formula for the ratio is:

[tex]\[ \text{Ratio} = \frac{\text{Number of Cartridges}}{\text{Total Cost}} \][/tex]

Let's perform the calculations:
- Package A:
[tex]\[ \text{Ratio}_A = \frac{3}{60} = 0.05 \][/tex]

- Package B:
[tex]\[ \text{Ratio}_B = \frac{6}{60} = 0.1 \][/tex]

- Package C:
[tex]\[ \text{Ratio}_C = \frac{1}{20} = 0.05 \][/tex]

- Package D:
[tex]\[ \text{Ratio}_D = \frac{3}{20} = 0.15 \][/tex]

### Step 3: Compare the Ratios
Now, we compare the ratios to identify which pairs of packages have the same ratio:
- Package A and B:
[tex]\[ 0.05 \neq 0.1 \][/tex]

- Package A and C:
[tex]\[ 0.05 = 0.05 \][/tex]

- Package A and D:
[tex]\[ 0.05 \neq 0.15 \][/tex]

- Package B and C:
[tex]\[ 0.1 \neq 0.05 \][/tex]

- Package B and D:
[tex]\[ 0.1 \neq 0.15 \][/tex]

- Package C and D:
[tex]\[ 0.05 \neq 0.15 \][/tex]

### Conclusion
The pairs that have the same ratio of cartridges to cost are:

[tex]\[ \boxed{\text{Packages A and C}} \][/tex]