Drag each tile to the correct location on the table. Each tile can be used more than once, but not all tiles will be used.

Choose the justification for each step in the solution to the given equation.

- subtraction property of equality
- division property of equality
- addition property of equality
- simplification
- multiplication property of equality

\begin{tabular}{|c|l|}
\hline Step & Justification \\
\hline[tex]$\frac{17}{3}-\frac{3}{4} x=\frac{1}{2} x+5$[/tex] & given \\
\hline[tex]$\frac{17}{3}-\frac{3}{4} x-\frac{17}{3}=\frac{1}{2} x+5-\frac{17}{3}$[/tex] & subtraction property of equality \\
\hline[tex]$-\frac{3}{4} x=\frac{1}{2} x-\frac{2}{3}$[/tex] & simplification \\
\hline[tex]$-\frac{3}{4} x-\frac{1}{2} x=\frac{1}{2} x-\frac{2}{3}-\frac{1}{2} x$[/tex] & subtraction property of equality \\
\hline[tex]$-\frac{5}{4} x=-\frac{2}{3}$[/tex] & simplification \\
\hline
\end{tabular}



Answer :

Let's match each step with the correct justification:

\begin{tabular}{|c|l|}
\hline
Step & Justification \\
\hline
[tex]$\frac{17}{3}-\frac{3}{4} x=\frac{1}{2} x+5$[/tex] & given \\
\hline
[tex]$\frac{17}{3}-\frac{3}{4} x-\frac{17}{3}=\frac{1}{2} x+5-\frac{17}{3}$[/tex] & subtraction property of equality \\
\hline
[tex]$-\frac{3}{4} x=\frac{1}{2} x-\frac{2}{3}$[/tex] & simplification \\
\hline
[tex]$-\frac{3}{4} x-\frac{1}{2} x=\frac{1}{2} x-\frac{2}{3}-\frac{1}{2} x$[/tex] & subtraction property of equality \\
\hline
[tex]$-\frac{5}{4} x=-\frac{2}{3}$[/tex] & simplification \\
\hline
\end{tabular}