Use the substitution method to solve the system of equations. Choose the correct ordered pair.

[tex]\[
\begin{array}{l}
2x + 2y = 16 \\
y = x - 4
\end{array}
\][/tex]

A. [tex]\((6, 2)\)[/tex]
B. [tex]\((6, -2)\)[/tex]
C. [tex]\((2, 2)\)[/tex]
D. [tex]\((2, -2)\)[/tex]



Answer :

To solve the system of equations using the substitution method, follow these steps:

Given the system:
[tex]\[ \begin{array}{l} 2x + 2y = 16 \\ y = x - 4 \end{array} \][/tex]

Step 1: Solve one of the equations for one variable.

The second equation is already solved for [tex]\( y \)[/tex]:
[tex]\[ y = x - 4 \][/tex]

Step 2: Substitute the expression from Step 1 into the other equation.

Substitute [tex]\( y = x - 4 \)[/tex] into the first equation:
[tex]\[ 2x + 2(x - 4) = 16 \][/tex]

Step 3: Simplify and solve for [tex]\( x \)[/tex].

Simplify the equation:
[tex]\[ 2x + 2x - 8 = 16 \][/tex]

Combine like terms:
[tex]\[ 4x - 8 = 16 \][/tex]

Add 8 to both sides of the equation:
[tex]\[ 4x = 24 \][/tex]

Divide both sides by 4:
[tex]\[ x = 6 \][/tex]

Step 4: Substitute [tex]\( x \)[/tex] back into the expression found in Step 1 to find [tex]\( y \)[/tex].

Substitute [tex]\( x = 6 \)[/tex] into [tex]\( y = x - 4 \)[/tex]:
[tex]\[ y = 6 - 4 \][/tex]

Simplify:
[tex]\[ y = 2 \][/tex]

Step 5: Write the solution as an ordered pair.

The solution to the system is:
[tex]\[ (x, y) = (6, 2) \][/tex]

Step 6: Match the solution with the given choices.

The correct ordered pair from the choices is:
[tex]\[ \text{A. } (6, 2) \][/tex]

So, the correct answer is [tex]\(\boxed{A}\)[/tex].