For any nonnegative real number [tex]a[/tex], [tex](\sqrt{a})^2 =[/tex]

A. [tex]\sqrt{3}[/tex]
B. [tex]a[/tex]
C. 1
D. [tex]a^2[/tex]



Answer :

To solve the expression [tex]\((\sqrt{a})^2\)[/tex] for any nonnegative real number [tex]\(a\)[/tex], follow these steps:

1. Understand the Expression:
[tex]\(\sqrt{a}\)[/tex] represents the square root of the nonnegative real number [tex]\(a\)[/tex].

2. Square the Square Root:
We need to square the square root of [tex]\(a\)[/tex]. The square root of a number is the value that, when squared, gives the original number. Therefore:
[tex]\[ (\sqrt{a})^2 \][/tex]

3. Apply the Property of Square Roots:
The property of square roots tells us that the square of the square root of a number returns the original number:
[tex]\[ (\sqrt{a})^2 = a \][/tex]

4. Conclusion:
Based on the property of square roots, we conclude that:
[tex]\[ (\sqrt{a})^2 = a \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{B} \][/tex]