Answer :
To determine the coordinates of the vertices for the image of triangle [tex]\( U V W \)[/tex] after a [tex]\( 180^\circ \)[/tex] counterclockwise rotation, we need to follow the properties of coordinates transformation for such a rotation.
When a point [tex]\((x, y)\)[/tex] is rotated [tex]\( 180^\circ \)[/tex] counterclockwise around the origin, the new coordinates become [tex]\((-x, -y)\)[/tex].
Given the original vertices of triangle [tex]\( U V W \)[/tex]:
[tex]\[ U(-1, 1) \][/tex]
[tex]\[ V(0, -4) \][/tex]
[tex]\[ W(-4, -1) \][/tex]
We can transform each vertex as follows:
1. For vertex [tex]\( U(-1, 1) \)[/tex]:
[tex]\[ U' = (-(-1), -(1)) = (1, -1) \][/tex]
2. For vertex [tex]\( V(0, -4) \)[/tex]:
[tex]\[ V' = (-(0), -(-4)) = (0, 4) \][/tex]
3. For vertex [tex]\( W(-4, -1) \)[/tex]:
[tex]\[ W' = (-(-4), -(-1)) = (4, 1) \][/tex]
Thus, the new coordinates of the vertices for the image triangle [tex]\( U' V' W' \)[/tex] after a [tex]\( 180^\circ \)[/tex] counterclockwise rotation are:
[tex]\[ U' (1, -1) \][/tex]
[tex]\[ V' (0, 4) \][/tex]
[tex]\[ W' (4, 1) \][/tex]
The correct answer is:
[tex]\[ U' (1, -1), V' (0, 4), W' (4, 1) \][/tex]
When a point [tex]\((x, y)\)[/tex] is rotated [tex]\( 180^\circ \)[/tex] counterclockwise around the origin, the new coordinates become [tex]\((-x, -y)\)[/tex].
Given the original vertices of triangle [tex]\( U V W \)[/tex]:
[tex]\[ U(-1, 1) \][/tex]
[tex]\[ V(0, -4) \][/tex]
[tex]\[ W(-4, -1) \][/tex]
We can transform each vertex as follows:
1. For vertex [tex]\( U(-1, 1) \)[/tex]:
[tex]\[ U' = (-(-1), -(1)) = (1, -1) \][/tex]
2. For vertex [tex]\( V(0, -4) \)[/tex]:
[tex]\[ V' = (-(0), -(-4)) = (0, 4) \][/tex]
3. For vertex [tex]\( W(-4, -1) \)[/tex]:
[tex]\[ W' = (-(-4), -(-1)) = (4, 1) \][/tex]
Thus, the new coordinates of the vertices for the image triangle [tex]\( U' V' W' \)[/tex] after a [tex]\( 180^\circ \)[/tex] counterclockwise rotation are:
[tex]\[ U' (1, -1) \][/tex]
[tex]\[ V' (0, 4) \][/tex]
[tex]\[ W' (4, 1) \][/tex]
The correct answer is:
[tex]\[ U' (1, -1), V' (0, 4), W' (4, 1) \][/tex]