Use the substitution method to solve the system of equations. Choose the correct ordered pair.

[tex]
\begin{array}{l}
x + y = 12 \\
-x = -y - 10
\end{array}
[/tex]

A. (11,1)
B. (9,3)
C. (8,4)
D. (10,2)



Answer :

To solve the system of equations using the substitution method, we need to follow a step-by-step approach. Let's start with the given equations:

1. [tex]\( x + y = 12 \)[/tex]
2. [tex]\( -x = -y - 10 \)[/tex]

First, let's simplify the second equation for use in substitution. We start with:

[tex]\[ -x = -y - 10 \][/tex]

We can rewrite this equation by multiplying both sides by -1 to get:

[tex]\[ x = y + 10 \][/tex]

Now, we can substitute this expression for [tex]\( x \)[/tex] into the first equation:

[tex]\[ x + y = 12 \][/tex]

Substituting [tex]\( x = y + 10 \)[/tex] into the equation:

[tex]\[ (y + 10) + y = 12 \][/tex]

Combining like terms:

[tex]\[ 2y + 10 = 12 \][/tex]

Next, solve for [tex]\( y \)[/tex]:

[tex]\[ 2y + 10 - 10 = 12 - 10 \][/tex]

[tex]\[ 2y = 2 \][/tex]

[tex]\[ y = \frac{2}{2} \][/tex]

[tex]\[ y = 1 \][/tex]

Now that we have the value of [tex]\( y \)[/tex], we can substitute it back into the equation [tex]\( x = y + 10 \)[/tex] to find [tex]\( x \)[/tex]:

[tex]\[ x = 1 + 10 \][/tex]

[tex]\[ x = 11 \][/tex]

Therefore, the solution to the system of equations is the ordered pair:

[tex]\[ (x, y) = (11, 1) \][/tex]

Let's check whether this solution matches any of the given options:

A. [tex]\((11,1)\)[/tex]

B. [tex]\((9,3)\)[/tex]

C. [tex]\((8,4)\)[/tex]

D. [tex]\((10,2)\)[/tex]

The correct ordered pair is:

A. [tex]\((11, 1)\)[/tex]