Answer :
To determine which choice is equivalent to the product [tex]\(\sqrt{8} \cdot \sqrt{5}\)[/tex], we can follow these steps:
1. Simplify the Product of Square Roots:
The expression [tex]\(\sqrt{8} \cdot \sqrt{5}\)[/tex] can be combined into a single square root using the property of square roots: [tex]\(\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}\)[/tex].
[tex]\[ \sqrt{8} \cdot \sqrt{5} = \sqrt{8 \cdot 5} \][/tex]
2. Calculate the Combined Radicand:
Multiply the numbers inside the square root:
[tex]\[ 8 \cdot 5 = 40 \][/tex]
So, the expression becomes:
[tex]\[ \sqrt{8} \cdot \sqrt{5} = \sqrt{40} \][/tex]
3. Simplify the Square Root:
Next, we simplify [tex]\(\sqrt{40}\)[/tex]. To do this, we look for perfect square factors of 40.
[tex]\[ 40 = 4 \times 10 \][/tex]
Notice that 4 is a perfect square ([tex]\(4 = 2^2\)[/tex]). Hence:
[tex]\[ \sqrt{40} = \sqrt{4 \times 10} = \sqrt{4} \times \sqrt{10} = 2 \times \sqrt{10} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt{40}\)[/tex] is [tex]\(2 \sqrt{10}\)[/tex].
4. Compare with Given Choices:
We now compare our simplified result [tex]\(2 \sqrt{10}\)[/tex] with the given choices:
[tex]\[ \text{A. } 10 \sqrt{2} \][/tex]
[tex]\[ \text{B. } 4 \sqrt{10} \][/tex]
[tex]\[ \text{C. } 2 \sqrt{10} \][/tex]
[tex]\[ \text{D. } \sqrt{13} \][/tex]
The expression [tex]\(2 \sqrt{10}\)[/tex] matches exactly with choice C.
Thus, the correct answer is:
[tex]\[ \boxed{2 \sqrt{10}} \][/tex]
1. Simplify the Product of Square Roots:
The expression [tex]\(\sqrt{8} \cdot \sqrt{5}\)[/tex] can be combined into a single square root using the property of square roots: [tex]\(\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}\)[/tex].
[tex]\[ \sqrt{8} \cdot \sqrt{5} = \sqrt{8 \cdot 5} \][/tex]
2. Calculate the Combined Radicand:
Multiply the numbers inside the square root:
[tex]\[ 8 \cdot 5 = 40 \][/tex]
So, the expression becomes:
[tex]\[ \sqrt{8} \cdot \sqrt{5} = \sqrt{40} \][/tex]
3. Simplify the Square Root:
Next, we simplify [tex]\(\sqrt{40}\)[/tex]. To do this, we look for perfect square factors of 40.
[tex]\[ 40 = 4 \times 10 \][/tex]
Notice that 4 is a perfect square ([tex]\(4 = 2^2\)[/tex]). Hence:
[tex]\[ \sqrt{40} = \sqrt{4 \times 10} = \sqrt{4} \times \sqrt{10} = 2 \times \sqrt{10} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt{40}\)[/tex] is [tex]\(2 \sqrt{10}\)[/tex].
4. Compare with Given Choices:
We now compare our simplified result [tex]\(2 \sqrt{10}\)[/tex] with the given choices:
[tex]\[ \text{A. } 10 \sqrt{2} \][/tex]
[tex]\[ \text{B. } 4 \sqrt{10} \][/tex]
[tex]\[ \text{C. } 2 \sqrt{10} \][/tex]
[tex]\[ \text{D. } \sqrt{13} \][/tex]
The expression [tex]\(2 \sqrt{10}\)[/tex] matches exactly with choice C.
Thus, the correct answer is:
[tex]\[ \boxed{2 \sqrt{10}} \][/tex]