What is [tex]\sin 60^{\circ}[/tex]?

A. [tex]\frac{1}{2}[/tex]

B. [tex]\frac{\sqrt{3}}{2}[/tex]

C. [tex]\frac{1}{\sqrt{2}}[/tex]

D. [tex]\sqrt{3}[/tex]

E. [tex]\frac{1}{\sqrt{3}}[/tex]

F. 1



Answer :

To find the value of [tex]\(\sin 60^\circ\)[/tex], we need to recall the value of the sine function for 60 degrees. The sine of 60 degrees is a well-known value in trigonometry.

Let's consider the unit circle or the 30-60-90 special right triangle, which is a standard right triangle where the angles are 30 degrees, 60 degrees, and 90 degrees. In such a triangle, the ratios of the sides are as follows:
- The length of the side opposite the 30-degree angle is [tex]\(\frac{1}{2}\)[/tex].
- The length of the side opposite the 60-degree angle is [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
- The length of the hypotenuse is 1.

In this triangle, for the 60-degree angle, the sine function is defined as the ratio of the length of the side opposite the angle to the length of the hypotenuse.

[tex]\[ \sin 60^\circ = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\frac{\sqrt{3}}{2}}{1} = \frac{\sqrt{3}}{2} \][/tex]

Thus, the value of [tex]\(\sin 60^\circ\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex].

Comparing this with the given options, we see that:
- Option A: [tex]\(\frac{1}{2}\)[/tex]
- Option B: [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
- Option C: [tex]\(\frac{1}{\sqrt{2}}\)[/tex]
- Option D: [tex]\(\sqrt{3}\)[/tex]
- Option E: [tex]\(\frac{1}{\sqrt{3}}\)[/tex]
- Option F: 1

Therefore, [tex]\(\sin 60^\circ = \frac{\sqrt{3}}{2}\)[/tex], which corresponds to Option B.