Which equation is the inverse of [tex]2(x-2)^2=8(7+y)[/tex]?

A. [tex]-2(x-2)^2=-8(7+y)[/tex]

B. [tex]y=\frac{1}{4} x^2-x-6[/tex]

C. [tex]y=-2 \pm \sqrt{28+4 x}[/tex]

D. [tex]y=2 \pm \sqrt{28+4 x}[/tex]



Answer :

To determine the inverse of the given equation [tex]\( 2(x-2)^2 = 8(7+y) \)[/tex], you can follow these steps:

1. Start with the given equation:
[tex]\[ 2(x-2)^2 = 8(7 + y) \][/tex]

2. Isolate the term containing [tex]\( y \)[/tex]:
[tex]\[ \frac{2(x-2)^2}{8} = 7 + y \][/tex]

3. Simplify the left-hand side:
[tex]\[ \frac{(x-2)^2}{4} = 7 + y \][/tex]

4. Isolate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{(x-2)^2}{4} - 7 \][/tex]

Thus, the inverse equation of [tex]\( 2(x-2)^2 = 8(7+y) \)[/tex] is:
[tex]\[ y = \frac{(x-2)^2}{4} - 7 \][/tex]

Looking at the options available:
1. [tex]\( -2(x-2)^2 = -8(7 + y) \)[/tex]
2. [tex]\( y = \frac{1}{4} x^2 - x - 6 \)[/tex]
3. [tex]\( y = -2 \pm \sqrt{28 + 4x} \)[/tex]
4. [tex]\( y = 2 \pm \sqrt{28 + 4x} \)[/tex]

The correct equation for the inverse is:
[tex]\[ y = \frac{(x-2)^2}{4} - 7 \][/tex]

This matches none of the options verbatim, but it's closest in form to the following (which seems to be derived from a simple term rearrangement/expansion):
[tex]\[ y = -6 + \left(\frac{x}{4}\right)^2 - \frac{x}{2} + 1 \][/tex]

Hence, identifying the correct matching option would require a correct symbolic rearrangement, but the core transformation for the inverse leading up to \\
[tex]\[y = \frac{(x-2)^2}{4} - 7\][/tex].