Answer :
Sure, let's solve the equation step-by-step:
Given equation:
[tex]\[ 3(4 - 2x) = -x + 1 \][/tex]
Step 1: Distribute the 3 on the left side of the equation.
[tex]\[ 3 \cdot 4 - 3 \cdot 2x = -x + 1 \][/tex]
[tex]\[ 12 - 6x = -x + 1 \][/tex]
Step 2: Move the terms involving [tex]\( x \)[/tex] to one side of the equation and the constant terms to the other side. Add [tex]\( 6x \)[/tex] to both sides.
[tex]\[ 12 = -x + 1 + 6x \][/tex]
[tex]\[ 12 = 1 + 5x \][/tex]
Step 3: Subtract 1 from both sides to isolate the term with [tex]\( x \)[/tex].
[tex]\[ 12 - 1 = 5x \][/tex]
[tex]\[ 11 = 5x \][/tex]
Step 4: Divide both sides by 5 to solve for [tex]\( x \)[/tex].
[tex]\[ x = \frac{11}{5} \][/tex]
So, the solution is:
[tex]\[ x = \frac{11}{5} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
Given equation:
[tex]\[ 3(4 - 2x) = -x + 1 \][/tex]
Step 1: Distribute the 3 on the left side of the equation.
[tex]\[ 3 \cdot 4 - 3 \cdot 2x = -x + 1 \][/tex]
[tex]\[ 12 - 6x = -x + 1 \][/tex]
Step 2: Move the terms involving [tex]\( x \)[/tex] to one side of the equation and the constant terms to the other side. Add [tex]\( 6x \)[/tex] to both sides.
[tex]\[ 12 = -x + 1 + 6x \][/tex]
[tex]\[ 12 = 1 + 5x \][/tex]
Step 3: Subtract 1 from both sides to isolate the term with [tex]\( x \)[/tex].
[tex]\[ 12 - 1 = 5x \][/tex]
[tex]\[ 11 = 5x \][/tex]
Step 4: Divide both sides by 5 to solve for [tex]\( x \)[/tex].
[tex]\[ x = \frac{11}{5} \][/tex]
So, the solution is:
[tex]\[ x = \frac{11}{5} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{B} \][/tex]