Answer :

To simplify the expression [tex]\( e^{8-4 \ln (x) + 3 \ln (y)} \)[/tex], we can apply some properties of logarithms and exponents. Here's a step-by-step solution:

1. Identify and Separate the Terms:
The expression inside the exponent is [tex]\( 8 - 4 \ln(x) + 3 \ln(y) \)[/tex].

2. Distribute the Exponentiation:
We can rewrite the expression inside the exponential function for easier handling:
[tex]\[ 8 - 4 \ln(x) + 3 \ln(y) \][/tex]

3. Exponentiation and Properties of Logarithms:
We know from properties of logarithms that [tex]\(\ln(a^b) = b \ln(a)\)[/tex]. We can use this property to separate the terms in the exponent.

4. Separate the Terms inside the Exponent:
By splitting the exponentiation of the sum:
[tex]\[ e^{8 - 4 \ln(x) + 3 \ln(y)} = e^8 \cdot e^{-4 \ln(x)} \cdot e^{3 \ln(y)} \][/tex]

5. Simplify Using [tex]\( e^{\ln(a)} = a \)[/tex]:
Apply the exponential and logarithmic properties:
[tex]\[ e^{-4 \ln(x)} = (e^{\ln(x)})^{-4} = x^{-4} \][/tex]
[tex]\[ e^{3 \ln(y)} = (e^{\ln(y)})^3 = y^3 \][/tex]

6. Combine the Expressions:
Putting it all together:
[tex]\[ e^{8 - 4 \ln(x) + 3 \ln(y)} = e^8 \cdot x^{-4} \cdot y^3 \][/tex]

7. Rewriting the Terms:
Combine the constants and appropriate terms to get the final expression:
[tex]\[ e^{8 - 4 \ln(x) + 3 \ln(y)} = \frac{y^3 \cdot e^8}{x^4} \][/tex]

Thus, the simplified form of the expression [tex]\( e^{8-4\ln(x)+3\ln(y)} \)[/tex] is:
[tex]\[ \boxed{\frac{y^3 e^8}{x^4}} \][/tex]