Select the angle that correctly completes the law of cosines for this triangle.

[tex]\[ 8^2 + 17^2 - 2(8)(17) \cos \theta = 15^2 \][/tex]

A. [tex]\( 180^{\circ} \)[/tex]

B. [tex]\( 62^{\circ} \)[/tex]

C. [tex]\( 28^{\circ} \)[/tex]

D. [tex]\( 90^{\circ} \)[/tex]



Answer :

Certainly! Let's use the Law of Cosines to find the angle that completes the given equation:

[tex]\[8^2 + 17^2 - 2 \cdot 8 \cdot 17 \cdot \cos(\theta) = 15^2\][/tex]

1. Begin by squaring the given side lengths:
[tex]\[ 8^2 = 64 \][/tex]
[tex]\[ 17^2 = 289 \][/tex]
[tex]\[ 15^2 = 225 \][/tex]

2. Substitute these values into the equation:
[tex]\[ 64 + 289 - 2 \cdot 8 \cdot 17 \cdot \cos(\theta) = 225 \][/tex]

3. Simplify the left side of the equation:
[tex]\[ 353 - 272 \cdot \cos(\theta) = 225 \][/tex]

4. Isolate the cosine term by subtracting 225 from both sides:
[tex]\[ 353 - 225 = 272 \cdot \cos(\theta) \][/tex]
[tex]\[ 128 = 272 \cdot \cos(\theta) \][/tex]

5. Solve for [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \cos(\theta) = \frac{128}{272} = \frac{16}{34} = \frac{8}{17} \][/tex]

6. Determine the angle [tex]\(\theta\)[/tex] that corresponds to [tex]\(\cos(\theta) = \frac{8}{17}\)[/tex]:
Using the inverse cosine (arccos) function:
[tex]\[ \theta \approx 61.93^{\circ} \][/tex]

7. Compare the calculated angle with the given options to find the closest value:
- 180°
- 62°
- 28°
- 90°

The closest angle to [tex]\(61.93^{\circ}\)[/tex] is [tex]\(62^{\circ}\)[/tex].

So, the correct answer is:
B. [tex]\(62^{\circ}\)[/tex]