What is the ratio of surface area to volume for a sphere with the following measurements?

Surface area: [tex]432 \, \text{m}^2[/tex]
Volume: [tex]864 \, \text{m}^3[/tex]

A. [tex]0.5 \, \text{m}^{-1}[/tex]
B. [tex]0.2 \, \text{m}^{-1}[/tex]
C. [tex]0.05 \, \text{m}^{-1}[/tex]
D. [tex]0.02 \, \text{m}^{-1}[/tex]



Answer :

To find the ratio of the surface area to the volume for the given sphere, follow these steps:

1. Identify the given values:
[tex]\[ \text{Surface area} = 432 \, \text{m}^2 \\ \text{Volume} = 864 \, \text{m}^3 \][/tex]

2. Calculate the ratio of the surface area to the volume:
[tex]\[ \text{Ratio} = \frac{\text{Surface area}}{\text{Volume}} = \frac{432 \, \text{m}^2}{864 \, \text{m}^3} \][/tex]

3. Perform the division:
[tex]\[ \text{Ratio} = \frac{432}{864} = 0.5 \, \text{m}^{-1} \][/tex]

So, the ratio of the surface area to the volume for the sphere is [tex]\(0.5 \, \text{m}^{-1}\)[/tex].

Therefore, the correct answer is:

A. [tex]\(0.5 \, \text{m}^{-1}\)[/tex]