The table gives some information about the heights of 30 plants.

\begin{tabular}{|c|c|}
\hline Height, [tex]$h$[/tex] in cm & Frequency \\
\hline [tex]$0 \leqslant h\ \textless \ 10$[/tex] & 1 \\
\hline [tex]$10 \leqslant h\ \textless \ 20$[/tex] & 9 \\
\hline [tex]$20 \leqslant h\ \textless \ 30$[/tex] & 7 \\
\hline [tex]$30 \leqslant h\ \textless \ 40$[/tex] & 13 \\
\hline
\end{tabular}

Which class interval contains the median?

A. [tex]$0 \leq h\ \textless \ 10$[/tex]
B. [tex]$10 \leq h\ \textless \ 20$[/tex]
C. [tex]$20 \leq h\ \textless \ 30$[/tex]
D. [tex]$30 \leq h\ \textless \ 40$[/tex]



Answer :

To determine which class interval contains the median, follow these steps:

1. Calculate the total number of plants:
Sum the frequencies given for each interval:
[tex]\[ 1 + 9 + 7 + 13 = 30 \][/tex]
So, there are 30 plants in total.

2. Determine the median position:
Since the total number of plants is 30, the median position is:
[tex]\[ \frac{30 + 1}{2} = 15.5 \][/tex]
This tells us that the median is the average of the 15th and 16th values when the plants are arranged in ascending order.

3. Calculate the cumulative frequency:
Create a cumulative frequency distribution:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Height Interval} & \text{Frequency} & \text{Cumulative Frequency} \\ \hline 0 \leqslant h < 10 & 1 & 1 \\ \hline 10 \leqslant h < 20 & 9 & 1 + 9 = 10 \\ \hline 20 \leqslant h < 30 & 7 & 10 + 7 = 17 \\ \hline 30 \leqslant h < 40 & 13 & 17 + 13 = 30 \\ \hline \end{array} \][/tex]

4. Identify the median class interval:
We need the interval where the 15th and 16th plants are located:
- For the first interval [tex]\(0 \leqslant h < 10\)[/tex], the cumulative frequency is 1 (insufficient).
- For the second interval [tex]\(10 \leqslant h < 20\)[/tex], the cumulative frequency is 10 (still insufficient).
- For the third interval [tex]\(20 \leqslant h < 30\)[/tex], the cumulative frequency is 17. This means the 15th and 16th plants are in this interval since 10 < 15.5 ≤ 17.

Thus, the class interval containing the median is [tex]\(20 \leqslant h < 30\)[/tex].

So, the answer is:

C