Which of these expressions is equivalent to [tex]\log \left(12^8\right)[/tex]?

A. [tex]\log (8) + \log (12)[/tex]

B. [tex]8 \cdot \log (12)[/tex]

C. [tex]\log (8) \cdot \log (12)[/tex]

D. [tex]\log (8) - \log (12)[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\log \left(12^8\right)\)[/tex], we can use the properties of logarithms, specifically the power rule. The power rule states that [tex]\(\log(a^b) = b \cdot \log(a)\)[/tex] for any positive real numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex].

Given the expression [tex]\(\log \left(12^8\right)\)[/tex]:

1. Apply the power rule:
[tex]\[ \log \left(12^8\right) = 8 \cdot \log (12) \][/tex]

Thus, [tex]\(\log \left(12^8\right)\)[/tex] is equivalent to [tex]\(8 \cdot \log(12)\)[/tex].

Among the given options:

A. [tex]\(\log(8) + \log(12)\)[/tex]: This does not match our expression.

B. [tex]\(8 \cdot \log(12)\)[/tex]: This matches our derived expression.

C. [tex]\(\log(8) \cdot \log(12)\)[/tex]: This does not match our expression.

D. [tex]\(\log(8) - \log(12)\)[/tex]: This does not match our expression.

Therefore, the correct answer is:

B. [tex]\(8 \cdot \log(12)\)[/tex].