A simple random sample of 90 is drawn from a normally distributed population, and the mean is found to be 138 with a standard deviation of 34. What is the [tex]$90 \%$[/tex] confidence interval for the population mean? Use the table below to help you answer the question.
\begin{tabular}{|c|c|c|c|}
\hline Confidence Level & [tex]$90 \%$[/tex] & [tex]$95 \%$[/tex] & [tex]$99 \%$[/tex] \\
\hline [tex]$z^\ \textless \ em\ \textgreater \ $[/tex]-score & 1.645 & 1.96 & 2.58 \\
\hline
\end{tabular}
Remember, the margin of error, [tex]$ME$[/tex], can be determined using the formula [tex]$ME = \frac{z^\ \textless \ /em\ \textgreater \ \cdot s}{\sqrt{n}}$[/tex].
A. 128.75 to 147.25
B. 130.98 to 145.02
C. 132.10 to 143.90
D. 137.38 to 138.62