Divide and simplify.

[tex]\[ \frac{2x^8 + 12x^6 - 10x^3}{-2x^5} \][/tex]

[tex]\[ \frac{2x^8 + 12x^6 - 10x^3}{-2x^5} = \square \][/tex]

(Simplify your answer.)



Answer :

Sure, let's simplify the given expression step-by-step:

The expression we need to simplify is:

[tex]\[ \frac{2x^8 + 12x^6 - 10x^3}{-2x^5} \][/tex]

### Step 1: Distribute the denominator to each term in the numerator

We can rewrite the fraction by distributing [tex]\(-2x^5\)[/tex] to each term in the numerator:

[tex]\[ \frac{2x^8}{-2x^5} + \frac{12x^6}{-2x^5} - \frac{10x^3}{-2x^5} \][/tex]

### Step 2: Simplify each term individually

- For the first term:

[tex]\[ \frac{2x^8}{-2x^5} = -\frac{2x^8}{2x^5} = -x^{8-5} = -x^3 \][/tex]

- For the second term:

[tex]\[ \frac{12x^6}{-2x^5} = -\frac{12x^6}{2x^5} = -6 \frac{x^6}{x^5} = -6x^{6-5} = -6x \][/tex]

- For the third term:

[tex]\[ \frac{10x^3}{-2x^5} = -\frac{10x^3}{2x^5} = -5 \frac{x^3}{x^5} = -5 x^{3-5} = -5 x^{-2} = \frac{5}{x^2} \][/tex]

### Step 3: Combine the simplified terms

Now, we combine all the simplified terms:

[tex]\[ -x^3 - 6x + \frac{5}{x^2} \][/tex]

Therefore, the simplified expression is:

[tex]\[ \boxed{-x^3 - 6x + \frac{5}{x^2}} \][/tex]