Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x - 7 = 7x - 14 \][/tex]

A. [tex]\( x = \frac{7}{4} \)[/tex]
B. [tex]\( x = \frac{4}{7} \)[/tex]
C. [tex]\( x = \frac{-4}{7} \)[/tex]
D. [tex]\( x = 3 \)[/tex]



Answer :

Certainly! We need to solve the equation [tex]\(3x - 7 = 7x - 14\)[/tex] and find the value of [tex]\(x\)[/tex]. Let's go through the steps in detail.

1. Write the given equation:
[tex]\[ 3x - 7 = 7x - 14 \][/tex]

2. Move all terms involving [tex]\(x\)[/tex] to one side and the constants to the other side:
[tex]\[ 3x - 7 - 7x = -14 \][/tex]

3. Combine like terms:
[tex]\[ 3x - 7x - 7 = -14 \][/tex]
This simplifies to:
[tex]\[ -4x - 7 = -14 \][/tex]

4. Add 7 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ -4x - 7 + 7 = -14 + 7 \][/tex]
Simplifying the equation, we get:
[tex]\[ -4x = -7 \][/tex]

5. Divide by [tex]\(-4\)[/tex] to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{-7}{-4} \][/tex]
Simplifying this fraction, we get:
[tex]\[ x = \frac{7}{4} \][/tex]

So, the solution is [tex]\(x = \frac{7}{4}\)[/tex], which is equivalent to [tex]\(1.75\)[/tex].

Therefore, the correct answer from the given options is:
[tex]\[ x = \frac{7}{4} \][/tex]