Answer :

To evaluate the expression [tex]\(2(x-4) + 3x - x^2\)[/tex] for [tex]\(x = 3\)[/tex], let's follow these steps:

1. Substitute [tex]\( x = 3 \)[/tex] into the expression:
[tex]\[ 2(3-4) + 3 \cdot 3 - 3^2 \][/tex]

2. Simplify inside the parentheses first:
[tex]\[ 3 - 4 = -1 \][/tex]
So the expression becomes:
[tex]\[ 2(-1) + 3 \cdot 3 - 3^2 \][/tex]

3. Multiply constants next:
[tex]\[ 2(-1) = -2 \][/tex]
[tex]\[ 3 \cdot 3 = 9 \][/tex]
[tex]\[ 3^2 = 9 \][/tex]
Now the expression is:
[tex]\[ -2 + 9 - 9 \][/tex]

4. Finally, perform the addition and subtraction:
[tex]\[ -2 + 9 = 7 \][/tex]
[tex]\[ 7 - 9 = -2 \][/tex]

So, the value of the expression when [tex]\( x = 3 \)[/tex] is [tex]\(-2\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{-2} \][/tex]