Select one of the factors of [tex]$5x^2 + 7x + 2$[/tex].

A. [tex]$5x - 2$[/tex]
B. [tex][tex]$x + 2$[/tex][/tex]
C. [tex]$5x + 1$[/tex]
D. None of the above



Answer :

To factor the given quadratic expression [tex]\(5x^2 + 7x + 2\)[/tex]:

1. Recognize the expression: We start with the quadratic [tex]\(5x^2 + 7x + 2\)[/tex].

2. Identify the factors: The quadratic factorizes into two binomials. After factoring, we have:
[tex]\[ (x + 1)(5x + 2) \][/tex]

We need to find which of the given options is a factor of [tex]\(5x^2 + 7x + 2\)[/tex].

3. Compare the options with the actual factors:
- The given factors from the factorization are [tex]\( (x + 1) \)[/tex] and [tex]\( (5x + 2) \)[/tex].

- We compare each option with these factors:
- [tex]\((5x - 2)\)[/tex] is not a factor.
- [tex]\((x + 2)\)[/tex] is not a factor.
- [tex]\((5x + 1)\)[/tex] is not a factor.

Since none of the given options match the factors [tex]\( (x + 1) \)[/tex] and [tex]\( (5x + 2) \)[/tex], the correct answer is:

[tex]\[ \boxed{\text{None of the above}} \][/tex]