QUESTION 6.

The following table has values for the one-to-one function [tex]$g(x)$[/tex]. Find [tex]$g^{-1}(19)$[/tex].

\begin{tabular}{c|cccccc}
[tex]$x$[/tex] & 4 & 7 & 12 & 14 & 16 & 19 \\
\hline
[tex]$g(x)$[/tex] & 6 & 11 & 15 & 18 & 19 & 23
\end{tabular}

Select the correct answer below:

A. [tex]$g^{-1}(19)=4$[/tex]

B. [tex]$g^{-1}(19)=16$[/tex]

C. [tex]$g^{-1}(19)=11$[/tex]

D. [tex]$g^{-1}(19)=23$[/tex]

E. [tex]$g^{-1}(19)=18$[/tex]

F. [tex]$g^{-1}(19)=12$[/tex]



Answer :

To find [tex]\( g^{-1}(19) \)[/tex] from the given table, we need to identify the value of [tex]\( x \)[/tex] for which [tex]\( g(x) = 19 \)[/tex].

Let's take a look at the table provided:

[tex]\[ \begin{array}{c|cccccc} x & 4 & 7 & 12 & 14 & 16 & 19 \\ \hline g(x) & 6 & 11 & 15 & 18 & 19 & 23 \end{array} \][/tex]

We need to find the [tex]\( x \)[/tex] that corresponds to [tex]\( g(x) = 19 \)[/tex]:

- For [tex]\( x = 4 \)[/tex], [tex]\( g(4) = 6 \)[/tex]
- For [tex]\( x = 7 \)[/tex], [tex]\( g(7) = 11 \)[/tex]
- For [tex]\( x = 12 \)[/tex], [tex]\( g(12) = 15 \)[/tex]
- For [tex]\( x = 14 \)[/tex], [tex]\( g(14) = 18 \)[/tex]
- For [tex]\( x = 16 \)[/tex], [tex]\( g(16) = 19 \)[/tex]
- For [tex]\( x = 19 \)[/tex], [tex]\( g(19) = 23 \)[/tex]

From this examination, we see that [tex]\( g(16) = 19 \)[/tex]. Therefore, [tex]\( g^{-1}(19) = 16 \)[/tex].

So the correct answer is:
[tex]\( \boxed{g^{-1}(19) = 16} \)[/tex]