Solve for [tex]$h$[/tex]:

[tex]$V=\frac{1}{4} \pi r^3 h$[/tex]

A. [tex][tex]$h=4 V \pi r^3$[/tex][/tex]

B. [tex]$h=\frac{\pi r^3}{4 V}$[/tex]

C. [tex]$h=\frac{4 V}{\pi r^3}$[/tex]



Answer :

To solve for [tex]\( h \)[/tex] in the equation [tex]\( V = \frac{1}{4} \pi r^3 h \)[/tex]:

1. Start with the given equation:
[tex]\[ V = \frac{1}{4} \pi r^3 h \][/tex]

2. To isolate [tex]\( h \)[/tex], we need to get [tex]\( h \)[/tex] alone on one side of the equation. First, multiply both sides of the equation by 4 to clear the fraction:
[tex]\[ 4V = \pi r^3 h \][/tex]

3. Next, divide both sides of the equation by [tex]\(\pi r^3\)[/tex] to solve for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{4V}{\pi r^3} \][/tex]

Thus, the solution for [tex]\( h \)[/tex] is:
[tex]\[ h = \frac{4V}{\pi r^3} \][/tex]

So, the correct answer is:
[tex]\[ h = \frac{4V}{\pi r^3} \][/tex]