Which expression is the simplest form of [tex]-\left(4 x^3 + x^2\right) + 2\left(x^3 - 3 x^2\right)[/tex]?

A. [tex]-6 x^3 - 2 x^2[/tex]
B. [tex]-2 x^3 - 7 x^2[/tex]
C. [tex]-6 x^3 - 6 x^2[/tex]
D. [tex]-2 x^3 - 5 x^2[/tex]



Answer :

Let's simplify the given expression step by step.

The expression to simplify is:
[tex]\[ -\left(4x^3 + x^2\right) + 2\left(x^3 - 3x^2\right) \][/tex]

First, we distribute the negative sign and the 2 inside their respective parentheses.

1. Distribute the [tex]\(-1\)[/tex] in [tex]\(-\left(4x^3 + x^2\right)\)[/tex]:
[tex]\[ -1 \cdot 4x^3 + -1 \cdot x^2 = -4x^3 - x^2 \][/tex]

2. Distribute the [tex]\(2\)[/tex] in [tex]\(2\left(x^3 - 3x^2\right)\)[/tex]:
[tex]\[ 2 \cdot x^3 + 2 \cdot (-3x^2) = 2x^3 - 6x^2 \][/tex]

Now, substitute these results back into the original expression:
[tex]\[ -4x^3 - x^2 + 2x^3 - 6x^2 \][/tex]

Next, combine the like terms (terms with [tex]\(x^3\)[/tex] and terms with [tex]\(x^2\)[/tex]):

- Combine the [tex]\(x^3\)[/tex] terms:
[tex]\[ -4x^3 + 2x^3 = -2x^3 \][/tex]

- Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ -x^2 - 6x^2 = -7x^2 \][/tex]

So the simplified expression is:
[tex]\[ -2x^3 - 7x^2 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{-2 x^3 - 7 x^2} \][/tex]

So the answer is B.