A simple random sample of 60 is drawn from a normally distributed population, and the mean is found to be 28, with a standard deviation of 5. Which of the following values is within the [tex]$95\%$[/tex] confidence interval [tex]$(z$[/tex]-score [tex]$= 1.96)$[/tex] for the population mean?

Remember, the margin of error, ME, can be determined using the formula [tex]$ME = \frac{2 \cdot S}{\sqrt{n}}$[/tex]

A. The value of 26, because it's not greater than 26.7 and less than 29.3
B. The value of 27, because it's greater than 26.7 and less than 29.3
C. The value of 32, because it's greater than 23 and less than 33
D. The value of 34, because it's not greater than 23 and less than 33



Answer :

To determine which of the given values falls within the 95% confidence interval for the population mean, let's break down the steps needed to find the confidence interval and assess each value.

1. Determine the Margin of Error (ME):
The formula given for the margin of error is not exactly the one described in the problem. Instead, we use:
[tex]\[ ME = z \cdot \frac{S}{\sqrt{n}} \][/tex]

Given:
- Sample size ([tex]\( n \)[/tex]) = 60
- Sample mean ([tex]\( \bar{x} \)[/tex]) = 28
- Standard deviation ([tex]\( S \)[/tex]) = 5
- [tex]\( z \)[/tex]-score = 1.96

Let's calculate the margin of error:
[tex]\[ ME = 1.96 \times \frac{5}{\sqrt{60}} \][/tex]

2. Calculate the Confidence Interval:
The confidence interval can be expressed as:
[tex]\[ \left( \bar{x} - ME, \bar{x} + ME \right) \][/tex]

Substituting the values:
[tex]\[ \text{Lower Bound} = 28 - ME \][/tex]
[tex]\[ \text{Upper Bound} = 28 + ME \][/tex]

Let's put the calculated margin of error values:
[tex]\[ \text{Lower Bound} = 26.73 \][/tex]
[tex]\[ \text{Upper Bound} = 29.27 \][/tex]

3. Assess Each Value:
- Value: 26
[tex]\[ \text{Is } 26 \text{ within } (26.73, 29.27)? \quad \text{No.} \quad 26 < 26.73 \][/tex]

- Value: 27
[tex]\[ \text{Is } 27 \text{ within } (26.73, 29.27)? \quad \text{Yes.} \quad 26.73 \leq 27 \leq 29.27 \][/tex]

- Value: 32
[tex]\[ \text{Is } 32 \text{ within } (26.73, 29.27)? \quad \text{No.} \quad 32 > 29.27 \][/tex]

- Value: 34
[tex]\[ \text{Is } 34 \text{ within } (26.73, 29.27)? \quad \text{No.} \quad 34 > 29.27 \][/tex]

Summary of Values within the Confidence Interval:

- 26: No, 26 is not within the interval [tex]\( (26.73, 29.27) \)[/tex]
- 27: Yes, 27 is within the interval [tex]\( (26.73, 29.27) \)[/tex]
- 32: No, 32 is not within the interval [tex]\( (26.73, 29.27) \)[/tex]
- 34: No, 34 is not within the interval [tex]\( (26.73, 29.27) \)[/tex]

Thus, the only value within the 95% confidence interval for the population mean is 27.