To find [tex]\( j(k(2)) \)[/tex], let's go through the process step-by-step.
First, we need to find the value of [tex]\( k(2) \)[/tex].
Given the function [tex]\( k(x) = 6x - 5 \)[/tex]:
[tex]\[
k(2) = 6 \cdot 2 - 5
\][/tex]
[tex]\[
k(2) = 12 - 5
\][/tex]
[tex]\[
k(2) = 7
\][/tex]
Now that we have [tex]\( k(2) = 7 \)[/tex], we need to find [tex]\( j(7) \)[/tex].
Given the function [tex]\( j(x) = -4x - 10 \)[/tex]:
[tex]\[
j(7) = -4 \cdot 7 - 10
\][/tex]
[tex]\[
j(7) = -28 - 10
\][/tex]
[tex]\[
j(7) = -38
\][/tex]
Therefore, the value of [tex]\( j(k(2)) \)[/tex] is [tex]\(-38\)[/tex].
The correct answer is:
[tex]\[ j(k(2)) = -38 \][/tex]