Write the equilibrium expression for the following reaction:

[tex]\[ H_{2(g)} + I_{2(g)} \longleftrightarrow 2 HI_{(g)} \][/tex]

A. [tex]\[ K = \frac{[HI]}{\left[H_2\right]\left[I_2\right]} \][/tex]

B. [tex]\[ K = \frac{|HY|}{\left\lfloor I_2 \mid\right.} \][/tex]

C. [tex]\[ K = \frac{[HI]^2}{\left[I_2\right]\left[H_2\right]} \][/tex]

D. [tex]\[ K = \frac{\lfloor HI]}{\left[I_2 \mid\left[H_2\right]\right.} \][/tex]



Answer :

Let's analyze the given chemical equilibrium reaction and identify the correct equilibrium expression:

Reaction:
[tex]\[ \text{H}_2\text{(g)} + \text{I}_2\text{(g)} \longleftrightarrow 2 \text{HI(g)} \][/tex]

The general form of the equilibrium expression for a balanced chemical reaction:

[tex]\[ aA + bB \longleftrightarrow cC + dD \][/tex]

is given by:

[tex]\[ K = \frac{[C]^c [D]^d}{[A]^a [B]^b} \][/tex]

For the given reaction:

[tex]\[ \text{H}_2\text{(g)} + \text{I}_2\text{(g)} \longleftrightarrow 2 \text{HI(g)} \][/tex]

- [tex]\( \text{A} \)[/tex] is [tex]\( \text{H}_2 \)[/tex], [tex]\(a = 1\)[/tex]
- [tex]\( \text{B} \)[/tex] is [tex]\( \text{I}_2 \)[/tex], [tex]\(b = 1\)[/tex]
- [tex]\( \text{C} \)[/tex] is [tex]\( \text{HI} \)[/tex], [tex]\(c = 2\)[/tex] (since there are 2 moles of HI produced)
- There is no [tex]\( \text{D} \)[/tex]

Therefore, the equilibrium expression (K) would be:

[tex]\[ K = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} \][/tex]

Now let's look at the given options and determine which one matches this form:

1. [tex]\( K = \frac{[\text{HI}]}{[\text{H}_2][\text{I}_2]} \)[/tex]
2. [tex]\( K = \frac{|\text{HY}|}{[\text{I}_2] \text{floor}} \)[/tex]
3. [tex]\( K = \frac{[\text{HI}]^2}{[\text{I}_2][\text{H}_2]} \)[/tex]
4. [tex]\( K = \frac{\text{floor} \text{HI}}{\left[\text{I}_2 \mid \left[\text{H}_2\right]\right.} \)[/tex]

The correct equilibrium expression for the given reaction is therefore:

[tex]\[ K = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} \][/tex]

Thus, the answer is the third option:

[tex]\[ K = \frac{[\text{HI}]^2}{[\text{I}_2][\text{H}_2]} \][/tex]

The correct equilibrium expression for the reaction [tex]\( \text{H}_2\text{(g)} + \text{I}_2\text{(g)} \longleftrightarrow 2 \text{HI(g)} \)[/tex] is:
[tex]\[ K = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} \][/tex]