Write the equilibrium expression for the following reaction:
[tex]\[
Ag_{(aq)}^{+} + 2 NH_3_{(aq)} \longleftrightarrow Ag\left(NH_3\right)_{2(aq)}^{+}
\][/tex]

A. [tex]\(K = \frac{\left[Ag\left(NH_3\right)_2^{+}\right]}{\left[Ag^{+}\right]}\)[/tex]

B. [tex]\(K = \frac{\left[Ag\left(NH_3\right)_2^{+}\right]}{\left[Ag^{+}\right]\left[NH_3\right]^2}\)[/tex]

C. [tex]\(K = \frac{\left[Ag^{+}\right]\left[NH_3\right]^2}{\left[Ag\left(NH_3\right)_2^{+}\right]}\)[/tex]



Answer :

To write the equilibrium expression for the given reaction, we need to consider the concentrations of the reactants and products. For the reaction:

[tex]\[ \text{Ag}^+_{(aq)} + 2 \text{NH}_3{(aq)} \longleftrightarrow \text{Ag(NH}_3\text{)}_{2(aq)}^+ \][/tex]

The equilibrium constant, [tex]\( K \)[/tex], is given by the ratio of the concentration of the products to the concentration of the reactants, each raised to the power of their respective stoichiometric coefficients.

So for the reaction:
[tex]\[ \text{Ag}^+_{(aq)} + 2 \text{NH}_3_{(aq)} \longleftrightarrow \text{Ag(NH}_3\text{)}_{2(aq)}^+ \][/tex]

The equilibrium expression [tex]\( K \)[/tex] is:

[tex]\[ K = \frac{[\text{Ag(NH}_3\text{)}_{2}^+]}{[\text{Ag}^+][\text{NH}_3]^2} \][/tex]

Therefore, the correct equilibrium expression for the reaction is:

[tex]\[ K = \frac{[\text{Ag(NH}_3\text{)}_{2}^+]}{[\text{Ag}^+][\text{NH}_3]^2} \][/tex]

Among the given options, this matches:

[tex]\[ K=\frac{\left[\text{Ag}\left(\text{NH}_3\right)_2^{+}\right]}{\left[\text{Ag}^{+}\right]\left[\text{NH}_3\right]^2} \][/tex]