Use the distributive property to remove the parentheses:

[tex]\[ -3(4w - 3u - 1) \][/tex]

[tex]\[ \square \][/tex]



Answer :

Certainly! Let's simplify the given expression using the distributive property.

The distributive property states that for any numbers [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:

[tex]\[ a(b + c) = ab + ac \][/tex]

In this case, the expression is:

[tex]\[ -3(4w - 3u - 1) \][/tex]

We need to distribute the [tex]\(-3\)[/tex] across each term inside the parentheses. Let's do this step-by-step.

1. Distribute [tex]\(-3\)[/tex] to [tex]\(4w\)[/tex]:

[tex]\[ -3 \cdot 4w = -12w \][/tex]

2. Distribute [tex]\(-3\)[/tex] to [tex]\(-3u\)[/tex]:

[tex]\[ -3 \cdot (-3u) = 9u \][/tex]

3. Distribute [tex]\(-3\)[/tex] to [tex]\(-1\)[/tex]:

[tex]\[ -3 \cdot (-1) = 3 \][/tex]

Finally, combining all these terms gives us the simplified expression:

[tex]\[ 9u - 12w + 3 \][/tex]

So,

[tex]\[ -3(4w - 3u - 1) = 9u - 12w + 3 \][/tex]