Answer :
Certainly! Let's simplify the given expression using the distributive property.
The distributive property states that for any numbers [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ a(b + c) = ab + ac \][/tex]
In this case, the expression is:
[tex]\[ -3(4w - 3u - 1) \][/tex]
We need to distribute the [tex]\(-3\)[/tex] across each term inside the parentheses. Let's do this step-by-step.
1. Distribute [tex]\(-3\)[/tex] to [tex]\(4w\)[/tex]:
[tex]\[ -3 \cdot 4w = -12w \][/tex]
2. Distribute [tex]\(-3\)[/tex] to [tex]\(-3u\)[/tex]:
[tex]\[ -3 \cdot (-3u) = 9u \][/tex]
3. Distribute [tex]\(-3\)[/tex] to [tex]\(-1\)[/tex]:
[tex]\[ -3 \cdot (-1) = 3 \][/tex]
Finally, combining all these terms gives us the simplified expression:
[tex]\[ 9u - 12w + 3 \][/tex]
So,
[tex]\[ -3(4w - 3u - 1) = 9u - 12w + 3 \][/tex]
The distributive property states that for any numbers [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ a(b + c) = ab + ac \][/tex]
In this case, the expression is:
[tex]\[ -3(4w - 3u - 1) \][/tex]
We need to distribute the [tex]\(-3\)[/tex] across each term inside the parentheses. Let's do this step-by-step.
1. Distribute [tex]\(-3\)[/tex] to [tex]\(4w\)[/tex]:
[tex]\[ -3 \cdot 4w = -12w \][/tex]
2. Distribute [tex]\(-3\)[/tex] to [tex]\(-3u\)[/tex]:
[tex]\[ -3 \cdot (-3u) = 9u \][/tex]
3. Distribute [tex]\(-3\)[/tex] to [tex]\(-1\)[/tex]:
[tex]\[ -3 \cdot (-1) = 3 \][/tex]
Finally, combining all these terms gives us the simplified expression:
[tex]\[ 9u - 12w + 3 \][/tex]
So,
[tex]\[ -3(4w - 3u - 1) = 9u - 12w + 3 \][/tex]