A sample of substance [tex]\(X\)[/tex] that has a mass of 326.0 g releases 4325.8 cal when it freezes at its freezing point. If substance [tex]\(X\)[/tex] has a molar mass of 58.45 g/mol, what is the molar heat of fusion for substance [tex]\(X\)[/tex]?

Use [tex]\( q = n \Delta H \)[/tex].

A. 13.31 cal/mol
B. 74.00 cal/mol
C. 775.6 cal/mol
D. 19054.7 cal/mol



Answer :

Sure, let's solve the problem step by step.

Step 1: Determine the number of moles of substance [tex]$X$[/tex].

Given:
- Mass of substance [tex]\(X\)[/tex] ([tex]\(m\)[/tex]) = 326.0 g
- Molar mass of substance [tex]\(X\)[/tex] ([tex]\(M\)[/tex]) = 58.45 g/mol

To find the number of moles ([tex]\(n\)[/tex]), we use the formula:
[tex]\[ n = \frac{m}{M} \][/tex]

Plug in the values:
[tex]\[ n = \frac{326.0 \, \text{g}}{58.45 \, \text{g/mol}} \][/tex]

This gives us:
[tex]\[ n \approx 5.577416595380667 \, \text{mol} \][/tex]

Step 2: Calculate the molar heat of fusion ([tex]\(\Delta H\)[/tex]).

Given:
- Heat released ([tex]\(q\)[/tex]) = 4325.8 cal
- Number of moles ([tex]\(n\)[/tex]) = 5.577416595380667 mol

To find the molar heat of fusion ([tex]\(\Delta H\)[/tex]), we use the relationship:
[tex]\[ q = n \Delta H \][/tex]

Rearrange to solve for [tex]\(\Delta H\)[/tex]:
[tex]\[ \Delta H = \frac{q}{n} \][/tex]

Plug in the values:
[tex]\[ \Delta H = \frac{4325.8 \, \text{cal}}{5.577416595380667 \, \text{mol}} \][/tex]

This gives us:
[tex]\[ \Delta H \approx 775.592055214724 \, \text{cal/mol} \][/tex]

Step 3: Choose the correct option.

The molar heat of fusion is approximately [tex]\( 775.6 \, \text{cal/mol} \)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{775.6 \, \text{cal/mol}} \][/tex]