Find the set of [tex]x[/tex] values that satisfy this inequality:
[tex]\[ |x| - 4 \geq 10 \][/tex]

Select one:
a. [tex]x \geq 14[/tex]
b. [tex]x \geq 14[/tex] or [tex]x \leq -14[/tex]
c. [tex]x \leq -14[/tex] or [tex]x \geq 6[/tex]
d. [tex]-14 \leq x \leq 14[/tex]



Answer :

To find the set of [tex]\( x \)[/tex] values that satisfy the inequality [tex]\( |x| - 4 \geq 10 \)[/tex], let's work through the problem step-by-step.

1. Start with the given inequality:

[tex]\[ |x| - 4 \geq 10 \][/tex]

2. Isolate the absolute value:

[tex]\[ |x| \geq 10 + 4 \][/tex]

[tex]\[ |x| \geq 14 \][/tex]

3. Understand the meaning of absolute value:

The absolute value [tex]\( |x| \geq 14 \)[/tex] means that [tex]\( x \)[/tex] is either less than or equal to -14, or greater than or equal to 14. This gives us two separate inequalities:

[tex]\[ x \leq -14 \quad \text{or} \quad x \geq 14 \][/tex]

4. Combine the inequalities to form the solution set:

The solution set includes all [tex]\( x \)[/tex]-values that are either less than or equal to -14, or greater than or equal to 14. Written in interval notation, this is:

[tex]\[ x \leq -14 \quad \text{or} \quad x \geq 14 \][/tex]

In other words, [tex]\( x \)[/tex] is in the intervals [tex]\((-\infty, -14]\)[/tex] or [tex]\([14, \infty)\)[/tex].

5. Let's map these intervals to the options provided:

- Option a: [tex]\( x \geq 14 \)[/tex] (This only covers part of the solution set.)
- Option b: [tex]\( x \geq 14 \)[/tex] or [tex]\( x \leq -14 \)[/tex] (This matches exactly with our solution set.)
- Option c: [tex]\( x \leq -14 \)[/tex] or [tex]\( x \geq 6 \)[/tex] (This does not match, as [tex]\( x \geq 6 \)[/tex] is not correct.)
- Option d: [tex]\( -14 \leq x \leq 14 \)[/tex] (This covers values between -14 and 14 which is incorrect.)

Thus, the correct answer is:

[tex]\[ \boxed{\text{b. } x \geq 14 \text{ or } x \leq -14} \][/tex]