Answer :

To express the energy in joules to three significant figures, we will use the known relationship between energy, frequency, and Planck's constant. The formula to calculate the energy ([tex]\(E\)[/tex]) is given by:

[tex]\[ E = h \times \nu \][/tex]

where:
- [tex]\(h\)[/tex] is Planck's constant.
- [tex]\(\nu\)[/tex] (nu) is the frequency of the radiation.

Given:
- The frequency [tex]\(\nu = 3.43 \times 10^{14}\)[/tex] Hz.
- Planck's constant [tex]\(h = 6.62607015 \times 10^{-34}\)[/tex] J·s (joule-seconds).

Now, calculate the energy [tex]\(E\)[/tex]:

[tex]\[ E = (6.62607015 \times 10^{-34} \, \text{J·s}) \times (3.43 \times 10^{14} \, \text{Hz}) \][/tex]

First, multiply the numerical parts:

[tex]\[ 6.62607015 \times 3.43 = 22.7274206145 \][/tex]

Then, combine the exponents of ten:

[tex]\[ 10^{-34} \times 10^{14} = 10^{-20} \][/tex]

So,

[tex]\[ E = 22.7274206145 \times 10^{-20} \][/tex]

Express this number in scientific notation:

[tex]\[ E = 2.27274206145 \times 10^{-19} \, \text{Joules} \][/tex]

To round this energy value to three significant figures, we look at the first three significant digits:

[tex]\[ E \approx 2.27 \times 10^{-19} \, \text{Joules} \][/tex]

Thus, the energy in joules to three significant figures is:

[tex]\[ 2.27 \times 10^{-19} \, \text{Joules} \][/tex]