If a rectangle has length [tex]$p$[/tex] and width [tex]$p-4$[/tex], what is the perimeter of the rectangle in terms of [tex][tex]$p$[/tex][/tex]?

A. [tex]2p-8[/tex]

B. [tex]2p-4[/tex]

C. [tex]4p-8[/tex]

D. [tex]4p-4[/tex]



Answer :

To find the perimeter of a rectangle, you can use the formula:

[tex]\[ \text{Perimeter} = 2 \times (\text{length} + \text{width}) \][/tex]

Given that the length of the rectangle is [tex]\( p \)[/tex] and the width is [tex]\( p - 4 \)[/tex], we can substitute these values into the formula.

First, let's write down the expression for the perimeter:

[tex]\[ \text{Perimeter} = 2 \times (p + (p - 4)) \][/tex]

Now, combine the terms inside the parentheses:

[tex]\[ p + (p - 4) = p + p - 4 = 2p - 4 \][/tex]

Next, multiply by 2 to find the perimeter:

[tex]\[ \text{Perimeter} = 2 \times (2p - 4) \][/tex]

Distribute the 2:

[tex]\[ \text{Perimeter} = 4p - 8 \][/tex]

Thus, the perimeter of the rectangle in terms of [tex]\( p \)[/tex] is:

[tex]\[ \boxed{4p - 8} \][/tex]