Answer :

To find [tex]\( f(4) \)[/tex] for the function [tex]\( f(x) = x^2 - 3x + 7 \)[/tex], you need to substitute [tex]\( x = 4 \)[/tex] into the function and simplify.

Here's the detailed step-by-step solution:

1. Start with the given function:
[tex]\[ f(x) = x^2 - 3x + 7 \][/tex]

2. Substitute [tex]\( x = 4 \)[/tex] into the function:
[tex]\[ f(4) = (4)^2 - 3(4) + 7 \][/tex]

3. Calculate the square of 4:
[tex]\[ (4)^2 = 16 \][/tex]

4. Multiply 3 by 4:
[tex]\[ 3 \times 4 = 12 \][/tex]

5. Now substitute these values back into the expression:
[tex]\[ f(4) = 16 - 12 + 7 \][/tex]

6. Perform the subtraction and addition:
[tex]\[ 16 - 12 = 4 \][/tex]
[tex]\[ 4 + 7 = 11 \][/tex]

So, the value of [tex]\( f(4) \)[/tex] is [tex]\( 11 \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{11} \][/tex]