What is the equation of the line of best fit for the following data? Round the slope and [tex]\(y\)[/tex]-intercept of the line to three decimal places.

[tex]\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
5 & 4 \\
\hline
6 & 6 \\
\hline
9 & 9 \\
\hline
10 & 11 \\
\hline
14 & 12 \\
\hline
\end{array}
\][/tex]

A. [tex]\(y = 0.894x + 0.535\)[/tex]
B. [tex]\(y = 0.535x + 0.894\)[/tex]
C. [tex]\(y = -0.535x + 0.894\)[/tex]
D. [tex]\(y = -0.894x + 0.535\)[/tex]



Answer :

To determine the equation of the line of best fit for the given dataset, we need to calculate the slope and the y-intercept of the line. Let's break down the process:

1. Listing the data points:
- [tex]\( (5, 4) \)[/tex]
- [tex]\( (6, 6) \)[/tex]
- [tex]\( (9, 9) \)[/tex]
- [tex]\( (10, 11) \)[/tex]
- [tex]\( (14, 12) \)[/tex]

2. Calculate the slope (m) and y-intercept (b):

The formula for the slope [tex]\( m \)[/tex] and y-intercept [tex]\( b \)[/tex] of the line of best fit using least squares regression are:
[tex]\[ m = \frac{N(\sum xy) - (\sum x)(\sum y)}{N(\sum x^2) - (\sum x)^2} \][/tex]
[tex]\[ b = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{N(\sum x^2) - (\sum x)^2} \][/tex]

Where [tex]\( N \)[/tex] is the number of data points.

Upon processing the given data:
- The calculated slope is approximately [tex]\( 0.894 \)[/tex]
- The calculated y-intercept is approximately [tex]\( 0.535 \)[/tex]

3. Form the equation:
Using the rounded values of the slope and y-intercept, the equation of the line of best fit is:
[tex]\[ y = 0.894x + 0.535 \][/tex]

4. Selecting the correct answer:
Among the multiple choices provided:
A. [tex]\( y = 0.894x + 0.535 \)[/tex]
B. [tex]\( y = 0.535x + 0.894 \)[/tex]
C. [tex]\( y = -0.535x + 0.894 \)[/tex]
D. [tex]\( y = -0.894x + 0.535 \)[/tex]

The correct equation of the line of best fit based on our calculations is:
A. [tex]\( y = 0.894x + 0.535 \)[/tex]