Suppose the linear regression line [tex]y = 2.009x - 37.131[/tex] predicts a pizza parlor's profits based on the number of pizzas sold. If [tex]x[/tex] represents the number of pizzas sold, and [tex]y[/tex] represents the pizza parlor's profits in dollars, about how much can the pizza parlor expect in profits if it sells 275 pizzas?

A. [tex]$\$[/tex]515[tex]$

B. $[/tex]\[tex]$550$[/tex]

C. [tex]$\$[/tex]585[tex]$

D. $[/tex]\[tex]$480$[/tex]



Answer :

Certainly! Let's solve the given linear regression equation step-by-step to determine the expected profit when 275 pizzas are sold.

The linear regression equation we're given is:
[tex]\[ y = 2.009x - 37.131 \][/tex]

Here, [tex]\( x \)[/tex] is the number of pizzas sold, and [tex]\( y \)[/tex] is the profit in dollars. We need to find the profit [tex]\( y \)[/tex] when [tex]\( x = 275 \)[/tex].

Substitute [tex]\( x = 275 \)[/tex] into the equation:
[tex]\[ y = 2.009(275) - 37.131 \][/tex]

First, calculate the product of 2.009 and 275:
[tex]\[ 2.009 \times 275 = 552.475 \][/tex]

Next, subtract 37.131 from this product:
[tex]\[ 552.475 - 37.131 = 515.344 \][/tex]

Therefore, the expected profit [tex]\( y \)[/tex] when 275 pizzas are sold is:
[tex]\[ y \approx 515.344 \][/tex]

Now we can compare this result to the options given:

A. [tex]$515$[/tex]
B. [tex]$550$[/tex]
C. [tex]$585$[/tex]
D. [tex]$480$[/tex]

The closest option to the calculated profit of [tex]$515.344 is: A. $[/tex]515[tex]$ Hence, the pizza parlor can expect a profit of approximately \$[/tex]515 if it sells 275 pizzas.