Solve for [tex]$y$[/tex], where [tex]$y$[/tex] is a real number.

[tex] y = \sqrt{-4y + 21} [/tex]

(If there is more than one solution, separate them with commas.)

[tex] y = \square [/tex]

No solution



Answer :

Sure! Let's solve the equation

[tex]\[ y = \sqrt{-4y + 21}. \][/tex]

### Step-by-Step Solution:

1. Square both sides:
To eliminate the square root, we square both sides of the equation.
[tex]\[ y^2 = (-4y + 21). \][/tex]

2. Rearrange the equation:
Move all terms to one side to set the equation to zero.
[tex]\[ y^2 + 4y - 21 = 0. \][/tex]

3. Solve the quadratic equation:
We will solve the quadratic equation [tex]\(y^2 + 4y - 21 = 0\)[/tex]. This can be solved using the quadratic formula
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \][/tex]
where [tex]\(a = 1\)[/tex], [tex]\(b = 4\)[/tex], and [tex]\(c = -21\)[/tex].

4. Substitute values into the quadratic formula:
[tex]\[ y = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-21)}}{2 \cdot 1}. \][/tex]
Simplify under the square root:
[tex]\[ y = \frac{-4 \pm \sqrt{16 + 84}}{2}. \][/tex]
[tex]\[ y = \frac{-4 \pm \sqrt{100}}{2}. \][/tex]

5. Simplify the square root:
[tex]\[ y = \frac{-4 \pm 10}{2}. \][/tex]

6. Find the possible solutions:
[tex]\[ y = \frac{-4 + 10}{2}, \quad \text{and} \quad y = \frac{-4 - 10}{2}. \][/tex]
[tex]\[ y = \frac{6}{2} = 3, \quad \text{and} \quad y = \frac{-14}{2} = -7. \][/tex]

7. Check for extraneous solutions:
Substitute [tex]\(y = 3\)[/tex] back into the original equation:
[tex]\[ 3 = \sqrt{-4(3) + 21}, \][/tex]
[tex]\[ 3 = \sqrt{-12 + 21}, \][/tex]
[tex]\[ 3 = \sqrt{9}, \][/tex]
[tex]\[ 3 = 3. \][/tex]
This solution is valid.

Now substitute [tex]\(y = -7\)[/tex] back into the original equation:
[tex]\[ -7 = \sqrt{-4(-7) + 21}, \][/tex]
[tex]\[ -7 = \sqrt{28 + 21}, \][/tex]
[tex]\[ -7 = \sqrt{49}, \][/tex]
[tex]\[ -7 = 7. \][/tex]
This is not valid because [tex]\(-7 \neq 7\)[/tex].

### Conclusion:
Only the solution [tex]\(y = 3\)[/tex] is valid. Therefore, the solution to the equation is:

[tex]\[ y = 3. \][/tex]