Select the correct answer.

What is the [tex]$y$[/tex]-intercept of function [tex]$P$[/tex]?
[tex]\[
f(x)=\left\{
\begin{array}{ll}
-3x-2, & -\infty \ \textless \ x \ \textless \ -2 \\
-x+1, & -2 \leq x \ \textless \ 3 \\
2x+5, & 3 \leq x \ \textless \ \infty
\end{array}
\right.
\][/tex]

A. -1

B. 5

C. 1

D. -2



Answer :

To determine the [tex]\( y \)[/tex]-intercept of the function [tex]\( f(x) \)[/tex], we need to evaluate the function at [tex]\( x = 0 \)[/tex]. The [tex]\( y \)[/tex]-intercept is the value of [tex]\( y \)[/tex] where the graph of the function crosses the [tex]\( y \)[/tex]-axis.

The given piecewise function [tex]\( f(x) \)[/tex] is defined as:

[tex]\[ f(x) = \begin{cases} -3x - 2, & \text{for } -\infty < x < -2 \\ -x + 1, & \text{for } -2 \leq x < 3 \\ 2x + 5, & \text{for } 3 \leq x < \infty \end{cases} \][/tex]

Let's check which piece of the function is valid at [tex]\( x = 0 \)[/tex]. The condition [tex]\( -2 \leq x < 3 \)[/tex] includes [tex]\( x = 0 \)[/tex]. Thus, we use the second piece of the function ([tex]\( f(x) = -x + 1 \)[/tex]) to find the [tex]\( y \)[/tex]-intercept.

Now, substitute [tex]\( x = 0 \)[/tex] into the second piece:

[tex]\[ f(0) = -0 + 1 = 1 \][/tex]

Therefore, the [tex]\( y \)[/tex]-intercept of the function [tex]\( f(x) \)[/tex] is [tex]\( 1 \)[/tex].

The correct answer is [tex]\( \boxed{1} \)[/tex].