Answer :
To find the sum of the series [tex]\(\sum_{k=1}^4 (2k^2 - 4)\)[/tex], we will evaluate the expression term by term and then sum the results.
Let's break it down step by step:
1. Evaluate the expression for [tex]\( k = 1 \)[/tex]:
[tex]\[ 2(1)^2 - 4 = 2 \cdot 1 - 4 = 2 - 4 = -2 \][/tex]
2. Evaluate the expression for [tex]\( k = 2 \)[/tex]:
[tex]\[ 2(2)^2 - 4 = 2 \cdot 4 - 4 = 8 - 4 = 4 \][/tex]
3. Evaluate the expression for [tex]\( k = 3 \)[/tex]:
[tex]\[ 2(3)^2 - 4 = 2 \cdot 9 - 4 = 18 - 4 = 14 \][/tex]
4. Evaluate the expression for [tex]\( k = 4 \)[/tex]:
[tex]\[ 2(4)^2 - 4 = 2 \cdot 16 - 4 = 32 - 4 = 28 \][/tex]
Next, we sum these individual results:
[tex]\[ -2 + 4 + 14 + 28 \][/tex]
Now, add these values together:
[tex]\[ -2 + 4 = 2 \][/tex]
[tex]\[ 2 + 14 = 16 \][/tex]
[tex]\[ 16 + 28 = 44 \][/tex]
Therefore, the sum of the series [tex]\(\sum_{k=1}^4 (2k^2 - 4)\)[/tex] is
[tex]\[ \boxed{44} \][/tex]
Let's break it down step by step:
1. Evaluate the expression for [tex]\( k = 1 \)[/tex]:
[tex]\[ 2(1)^2 - 4 = 2 \cdot 1 - 4 = 2 - 4 = -2 \][/tex]
2. Evaluate the expression for [tex]\( k = 2 \)[/tex]:
[tex]\[ 2(2)^2 - 4 = 2 \cdot 4 - 4 = 8 - 4 = 4 \][/tex]
3. Evaluate the expression for [tex]\( k = 3 \)[/tex]:
[tex]\[ 2(3)^2 - 4 = 2 \cdot 9 - 4 = 18 - 4 = 14 \][/tex]
4. Evaluate the expression for [tex]\( k = 4 \)[/tex]:
[tex]\[ 2(4)^2 - 4 = 2 \cdot 16 - 4 = 32 - 4 = 28 \][/tex]
Next, we sum these individual results:
[tex]\[ -2 + 4 + 14 + 28 \][/tex]
Now, add these values together:
[tex]\[ -2 + 4 = 2 \][/tex]
[tex]\[ 2 + 14 = 16 \][/tex]
[tex]\[ 16 + 28 = 44 \][/tex]
Therefore, the sum of the series [tex]\(\sum_{k=1}^4 (2k^2 - 4)\)[/tex] is
[tex]\[ \boxed{44} \][/tex]