Answer :
To find the coordinates of point [tex]\( P \)[/tex] on the directed line segment from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] such that [tex]\( P \)[/tex] is [tex]\(\frac{1}{3}\)[/tex] the length from [tex]\( A \)[/tex] to [tex]\( B \)[/tex], we can use the section formula:
Given:
- Point [tex]\( A = (1, 5) \)[/tex]
- Point [tex]\( B = (-4, -5) \)[/tex]
- The ratio is [tex]\( m : n = 1 : 2 \)[/tex] (since [tex]\( P \)[/tex] is [tex]\( \frac{1}{3} \)[/tex] of the way, the remaining segment is [tex]\( \frac{2}{3} \)[/tex])
The section formula for coordinates [tex]\( (x,y) \)[/tex] is:
[tex]\[ \begin{array}{l} x=\left(\frac{m}{m+n}\right)\left(x_2-x_1\right)+x_1 \\ y=\left(\frac{m}{m+n}\right)\left(y_2-y_1\right)+y_1 \end{array} \][/tex]
1. Calculate the [tex]\( x \)[/tex]-coordinate of [tex]\( P \)[/tex]:
[tex]\[ \begin{array}{l} x_1 = 1 \\ x_2 = -4 \\ m = 1 \\ n = 2 \end{array} \][/tex]
[tex]\[ x = \left( \frac{m}{m+n} \right)(x_2 - x_1) + x_1 \][/tex]
Substitute the values:
[tex]\[ x = \left( \frac{1}{1+2} \right)(-4 - 1) + 1 \][/tex]
[tex]\[ x = \left( \frac{1}{3} \right)(-5) + 1 \][/tex]
[tex]\[ x = -\frac{5}{3} + 1 \][/tex]
Convert 1 into thirds:
[tex]\[ x = -\frac{5}{3} + \frac{3}{3} \][/tex]
[tex]\[ x = -\frac{5}{3} + \frac{3}{3} = -\frac{2}{3} \][/tex]
2. Calculate the [tex]\( y \)[/tex]-coordinate of [tex]\( P \)[/tex]:
[tex]\[ \begin{array}{l} y_1 = 5 \\ y_2 = -5 \\ m = 1 \\ n = 2 \end{array} \][/tex]
[tex]\[ y = \left( \frac{m}{m+n} \right)(y_2 - y_1) + y_1 \][/tex]
Substitute the values:
[tex]\[ y = \left( \frac{1}{1+2} \right)(-5 - 5) + 5 \][/tex]
[tex]\[ y = \left( \frac{1}{3} \right)(-10) + 5 \][/tex]
[tex]\[ y = -\frac{10}{3} + 5 \][/tex]
Convert 5 into thirds:
[tex]\[ y = -\frac{10}{3} + \frac{15}{3} \][/tex]
[tex]\[ y = -\frac{10}{3} + \frac{15}{3} = \frac{5}{3} \][/tex]
Thus, the coordinates of point [tex]\( P \)[/tex] are [tex]\( \left( -\frac{2}{3}, \frac{5}{3} \right) \)[/tex] which is approximately [tex]\( (-0.6667, 1.6667) \)[/tex].
Given:
- Point [tex]\( A = (1, 5) \)[/tex]
- Point [tex]\( B = (-4, -5) \)[/tex]
- The ratio is [tex]\( m : n = 1 : 2 \)[/tex] (since [tex]\( P \)[/tex] is [tex]\( \frac{1}{3} \)[/tex] of the way, the remaining segment is [tex]\( \frac{2}{3} \)[/tex])
The section formula for coordinates [tex]\( (x,y) \)[/tex] is:
[tex]\[ \begin{array}{l} x=\left(\frac{m}{m+n}\right)\left(x_2-x_1\right)+x_1 \\ y=\left(\frac{m}{m+n}\right)\left(y_2-y_1\right)+y_1 \end{array} \][/tex]
1. Calculate the [tex]\( x \)[/tex]-coordinate of [tex]\( P \)[/tex]:
[tex]\[ \begin{array}{l} x_1 = 1 \\ x_2 = -4 \\ m = 1 \\ n = 2 \end{array} \][/tex]
[tex]\[ x = \left( \frac{m}{m+n} \right)(x_2 - x_1) + x_1 \][/tex]
Substitute the values:
[tex]\[ x = \left( \frac{1}{1+2} \right)(-4 - 1) + 1 \][/tex]
[tex]\[ x = \left( \frac{1}{3} \right)(-5) + 1 \][/tex]
[tex]\[ x = -\frac{5}{3} + 1 \][/tex]
Convert 1 into thirds:
[tex]\[ x = -\frac{5}{3} + \frac{3}{3} \][/tex]
[tex]\[ x = -\frac{5}{3} + \frac{3}{3} = -\frac{2}{3} \][/tex]
2. Calculate the [tex]\( y \)[/tex]-coordinate of [tex]\( P \)[/tex]:
[tex]\[ \begin{array}{l} y_1 = 5 \\ y_2 = -5 \\ m = 1 \\ n = 2 \end{array} \][/tex]
[tex]\[ y = \left( \frac{m}{m+n} \right)(y_2 - y_1) + y_1 \][/tex]
Substitute the values:
[tex]\[ y = \left( \frac{1}{1+2} \right)(-5 - 5) + 5 \][/tex]
[tex]\[ y = \left( \frac{1}{3} \right)(-10) + 5 \][/tex]
[tex]\[ y = -\frac{10}{3} + 5 \][/tex]
Convert 5 into thirds:
[tex]\[ y = -\frac{10}{3} + \frac{15}{3} \][/tex]
[tex]\[ y = -\frac{10}{3} + \frac{15}{3} = \frac{5}{3} \][/tex]
Thus, the coordinates of point [tex]\( P \)[/tex] are [tex]\( \left( -\frac{2}{3}, \frac{5}{3} \right) \)[/tex] which is approximately [tex]\( (-0.6667, 1.6667) \)[/tex].