Perform the following operation and express the answer in proper scientific notation.

[tex]\[
\frac{9.0 \times 10^{-5}}{2.0 \times 10^{-8}} = [?] \times 10^{[?]}
\][/tex]

Enter the coefficient for the green box and the exponent only for the yellow box.



Answer :

To solve the expression and express it in scientific notation, let's break down the operation step-by-step:

1. Write down the given values:
[tex]\[ \text{numerator} = 9.0 \times 10^{-5} \][/tex]
[tex]\[ \text{denominator} = 2.0 \times 10^{-8} \][/tex]

2. Perform the division of the coefficients:
[tex]\[ \frac{9.0}{2.0} = 4.5 \][/tex]

3. Handle the powers of ten separately:
Use the property of exponents:
[tex]\[ \frac{10^{-5}}{10^{-8}} = 10^{-5 - (-8)} = 10^{-5 + 8} = 10^{3} \][/tex]

4. Combine the results of the coefficients and the powers of ten:
[tex]\[ \frac{9.0 \times 10^{-5}}{2.0 \times 10^{-8}} = 4.5 \times 10^{3} \][/tex]

5. Express the answer correctly in scientific notation:
The coefficient is [tex]\( 4.5 \)[/tex] and the exponent is [tex]\( 3 \)[/tex].

Therefore, the final answer is:
[tex]\[ \frac{9.0 \times 10^{-5}}{2.0 \times 10^{-8}} = \boxed{4.5} \times 10^{\boxed{3}} \][/tex]