On a number line, the directed line segment from [tex]$Q$[/tex] to [tex]$S$[/tex] has endpoints [tex]$Q$[/tex] at -8 and [tex]$S$[/tex] at 12. Point [tex]$R$[/tex] partitions the directed line segment from [tex]$Q$[/tex] to [tex]$S$[/tex] in a 4:1 ratio.

Which expression correctly uses the formula [tex]$\left(\frac{m}{m+n}\right)\left(x_2-x_1\right)+x_1$[/tex] to find the location of point [tex]$R$[/tex]?

A. [tex]$\left(\frac{1}{1+4}\right)(12-(-8))+(-8)$[/tex]

B. [tex]$\left(\frac{4}{4+1}\right)(12-(-8))+(-8)$[/tex]

C. [tex]$\left(\frac{4}{4+1}\right)(-8-12)+12$[/tex]

D. [tex]$\left(\frac{4}{1+4}\right)(-8-12)+12$[/tex]



Answer :

To find the coordinates of point [tex]\( R \)[/tex], which partitions the line segment from [tex]\( Q \)[/tex] to [tex]\( S \)[/tex] in the ratio 4:1, we use the formula

[tex]\[ \left( \frac{m}{m+n} \right) (x_2 - x_1) + x_1 \][/tex]

Given:
- [tex]\( Q \)[/tex] is at [tex]\(-8\)[/tex]
- [tex]\( S \)[/tex] is at [tex]\(12\)[/tex]
- The ratio [tex]\( m:n \)[/tex] is [tex]\(4:1\)[/tex]

Let's identify each variable in the formula:
- [tex]\( x_1 = -8 \)[/tex] (position of [tex]\( Q \)[/tex])
- [tex]\( x_2 = 12 \)[/tex] (position of [tex]\( S \)[/tex])
- [tex]\( m = 4 \)[/tex]
- [tex]\( n = 1 \)[/tex]

Substitute these values into the formula:

[tex]\[ \left( \frac{4}{4+1} \right) (12 - (-8)) + (-8) \][/tex]

Now, let's break down the calculations step by step:

1. Calculate [tex]\( m + n \)[/tex]:
[tex]\[ 4 + 1 = 5 \][/tex]

2. Calculate [tex]\( x_2 - x_1 \)[/tex]:
[tex]\[ 12 - (-8) = 12 + 8 = 20 \][/tex]

3. Plug the values back into the formula:
[tex]\[ \left( \frac{4}{5} \right) (20) + (-8) \][/tex]

4. Simplify the expression inside the parentheses:
[tex]\[ \frac{4 \times 20}{5} = \frac{80}{5} = 16 \][/tex]

5. Add the last component to complete the expression:
[tex]\[ 16 + (-8) = 16 - 8 = 8 \][/tex]

So, the location of point [tex]\( R \)[/tex] is [tex]\( 8 \)[/tex].

Among the given options, the correct expression is:
[tex]\[ \left(\frac{4}{4+1}\right)(12-(-8))+(-8) \][/tex]

Thus, the right formula that correctly finds the location of point [tex]\( R \)[/tex] is [tex]\(\left(\frac{4}{4+1}\right)(12-(-8))+(-8)\)[/tex].